Math, asked by vs724569, 1 year ago

under root 3 X square + 10 X + 7 under root 3 equal to zero solve ​

Answers

Answered by rani49035
1

Answer:

√3x^2 + 10x +7√3 = 0

√3x^2 + 7x +3x +7√3=0

x(√3x+7) +√3(√3x +7) =0

(x+√3) + (√3x + 7) = 0

x= -√3 and x= -7/√3

hope this will help you..

Answered by amitkumar44481
1

 \bold\red \star \:  \underline{Question:-}\\

 \red{ Q.  } \:  \:  \: \sqrt{3}  {x}^{2}  + 10x + 7 \sqrt{3}  = 0.\\ \\

\bold\red \star \:  \underline{Solution:-}

 \sqrt{3 }  {x}^{2}  + 10x + 7 \sqrt{3} =  0. \\  \\  \sqrt{3}  {x}^{2}  + 7x + 3x + 7 \sqrt{3}  = 0 . \\  \\

_______________Or________________

\\ \\\sqrt{3}  {x}^{2}  + 3x + 7x + 7 \sqrt{3}  = 0. \\  \\  \sqrt{3} x(x +  \sqrt{3} ) + 7(x +  \sqrt{3} ) = 0. \\  \\  \sqrt{3} x + 7 = 0. \:  \:  \:  \:  \red{or} \:  \:  \:  \: x +  \sqrt{3}  = 0. \\  \\ x =  \frac{7}{ \sqrt{3}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \red  {or} \:  \:  \:  \:  \:  \:  \: x =  -  \sqrt{3}. \\ \\

______________________________________

 \\ \\ \purple {\ll{Rationalizing.}}

x =  \frac{7}{ \sqrt{3} } . \\  \\   \:  \:  \:  \: =  \frac{7}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3}}  . \\  \\   \:  \:  \:  \: =  \frac{7 \sqrt{3} }{3}.\\ \\

_____________________________________

Our \:  \:  Answer... \\  \\ x =  -  \sqrt{3}  \:  \:  \:  \:  \: \:  \:  \:  \:  \red{ or} \:  \:  \:  \:  \:  \: x =  \frac{7 \sqrt{3} }{3} .

Similar questions