Math, asked by aryanchaudhary500, 10 months ago

under root x upon 1 - X + under root 1 - X upon X equals to 13 upon 6​

Answers

Answered by Anonymous
2

Answer:

\bf\huge\red{x =\frac{4 ±\sqrt{7}}{3}}

Step-by-step explanation:

It is being given that,

 \frac{ \sqrt{x} }{1  - x}  +  \frac{1 - x}{ \sqrt{x} }  =  \frac{13}{6}

Now, taking the LCM and solving,

we get,

 =  >  \frac{ { (\sqrt{x} )}^{2} +  {(1 - x)}^{2}  }{ \sqrt{x} (1 - x)}  =  \frac{13}{6}

Further ,

 =  >  \frac{x + 1 +  {x}^{2}  - 2x}{ \sqrt{x}(1 - x) }  =  \frac{13}{6}

 =  >  {6( {x}^{2}  - x + 1)} = 13 \sqrt{x} (1 - x)

Let, us take

 \frac{ \sqrt{x} }{1 - x}  = a

So, we get

 =  > a +  \frac{1}{a}  =  \frac{13}{6}

 =  >  \frac{ {a}^{2} + 1 }{a  }  =  \frac{13}{6}

On cross multiplication, we get

 =  > 6( {a}^{2}  + 1) = 13a

 =  > 6 {a}^{2}  - 13a + 6 = 0

After solving the values of a, we get

 =  > a =  \frac{13  +    \sqrt{169 - 144} }{12}

 =  > a =  \frac{13 +  \sqrt{25} }{12 }  \\  \\  =  > a =  \frac{13 + 5}{12}  \\  \\  =  > a =  \frac{18}{12}  \\  \\  =  > a =  \frac{3}{2}

Therefore, we get

 =  >  \frac{ \sqrt{x} }{1 - x}  =  \frac{3}{2}

Now, squaring both sides and doing cross multiplication,

we get,

 =  > 2x = 3( {x}^{2}  - 2x + 1)

 =  > 3 {x}^{2}  - 8x + 3 = 0

Now, solving for x, we get

 =  > x =  \frac{8 ± \sqrt{64 - 36} }{6}  \\  \\  =  > x =  \frac{8 ± \sqrt{28} }{6}  \\  \\  =  > x =  \frac{8 ± 2 \sqrt{7} }{6}  \\  \\  =  > x =  \frac{4 ±  \sqrt{7} }{3}

Similar questions