Math, asked by addmnrhmbaksa, 10 months ago

under what condition of the roots of the equation ax²+by+c=0 are such that one root will be the square of other​

Answers

Answered by Anonymous
27

Step-by-step explanation:

let \: one \: root \: be \: \alpha \\   \:and \: the \: other \: root \: will \: be \: n \alpha  \:  \\ by \: the \: given \: condition \\  \\ sum =  \\   \:  \alpha  + n \alpha  =  \frac{ - b}{a}  \:  \:( or) \:  \:  \alpha  =  \frac{b}{a(1 + n)}   \:  \:  \:  \: eq1 \\  \\ Product = \\ n { \alpha }^{2}  =  \frac{c}{a} ==>  \:  \alpha  =  \frac{c}{na}  \:  \: eq2 \\  \\ Now \\  \\ from \: eq \: 1 \: and \: eq \: 2 \\  \\  { \alpha }^{2} =  ( { \alpha }^{2} ) \\  \\ ==> \:  \frac{c}{an}  =  \frac{ {b}^{2} }{ {a}^{2}  {(1 + n)}^{2} }  \\  \\ ==> n{b}^{2}  = ac {(n + 1)}^{2}

Similar questions