under what condition will the roots of the quadratic equation ax2+ bx + c =0 (a≠0) be real
Answers
Answered by
3
Step-by-step explanation:
When a, b, and c are real numbers, a ≠ 0 and the discriminant is positive but not a perfect square then the roots of the quadratic equation ax2 + bx + c = 0 are real, irrational and unequal..... prefer to it child
Answered by
8
Answer:
When a, b, and c are real numbers, a ≠ 0 and the discriminant is positive but not a perfect square then the roots of the quadratic equation ax2 + bx + c = 0 are real, irrational and unequal.
Roots of a Quadratic Equation
The number of roots of a polynomial equation is equal to its degree. Hence, a quadratic equation has 2 roots. Let α and β be the roots of the general form of the quadratic equation :ax2 + bx + c = 0. We can write:
α = (-b-√b2-4ac)/2a and β = (-b+√b2-4ac)/2a
Here a, b, and c are real and rational. Hence, the nature of the roots α and β of equation ax2 + bx + c = 0 depends on the quantity or expression (b2 – 4ac) under the square root sign. We say this because the root of a negative number can’t be any real number. Say x2 = -1 is a quadratic equation. There is no real number whose square is negative. Therefore for this equation, there are no real number solutions.
hope it is helpful
make me as brineliest
Similar questions