Math, asked by bhavikadave7058, 2 months ago

underoot 15 + underoot 17 ) underoot 15 - underoot 17​

Answers

Answered by Anonymous
11

Given to find the value of :-

( \sqrt{15}  +  \sqrt{17} )( \sqrt{15}  -  \sqrt{17} )

Solution:-

Here it is in form of ,

\bigstar \underline{\boxed{ \mathfrak{(a+b)(a-b)=a^2-b^2}}}

By using this identity we can solve.

 = ( \sqrt{15} ) { }^{2}  - ( \sqrt{17} ) {}^{2}

 = 15 - 17

 =  \:  - 2

So, the value of

( \sqrt{15}  +  \sqrt{17} )( \sqrt{15}  -  \sqrt{17} ) =  - 2

Alternate method :-

( \sqrt{15}  +  \sqrt{17} )( \sqrt{15}  -  \sqrt{17} )

We can do normal multiplication

 \sqrt{15} ( \sqrt{15}  -    \sqrt{17} ) +  \sqrt{17} ( \sqrt{15}  -  \sqrt{17} )

( \sqrt{15} ) {}^{2}  -  \sqrt{15}  \times  \sqrt{17}   +  \sqrt{15}  \times  \sqrt{17}  - ( \sqrt{17} ) {}^{2}

( \sqrt{15} ) {}^{2}  - ( \sqrt{17} ) {}^{2}

15 - 17

 - 2

Hence , in both methods same answer

___________________

# Know more Algebraic Identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions