Math, asked by jgxti, 1 year ago

underoot 7 y^2 - 6y -13th underoot 7=0

Answers

Answered by kishanswaroopya
2

given \\  \sqrt{7}   {y}^{2}  - 6y - 13 \sqrt{7 }  = 0 \\  \sqrt{7 }  {y}^{2}  - 13y + 7y - 13 \sqrt{7}  = 0 \\ y( \sqrt{7} y - 13) +  \sqrt{7} ( \sqrt{7} y - 13) = 0 \\ ( \sqrt{7} y - 13) \: (y +  \sqrt{7} ) = 0 \\ ( \sqrt{7} y - 13) = 0 \: and \: (y +  \sqrt{7} ) = 0 \\  \sqrt{7} y = 13 \: and \: y =  -  \sqrt{7}  \\ y =  \frac{13}{ \sqrt{7} } and \: y =  -  \sqrt{7}  \\ rationalize \: y =  \frac{13}{ \sqrt{7} }  \\ y =  \frac{13 \sqrt{7} }{7}  \: and \: y =  -  \sqrt{7}  \\ therefore \: the \: values \: of \: y \: is \\   \frac{13 \sqrt{7} }{7} and \:  -  \sqrt{7}

jgxti: Thank you so much
Similar questions