Physics, asked by Mak1234, 8 months ago

Uniform metal wire of specific resistance 64 × 10^-6 Ωm and length 1.98m has a resistance of 7Ω. What is the diameter of the wire?

Answers

Answered by rocky200216
12

\bigstar \sf{\blue{\underline{\underline{\red{CONCEPT:-}}}}}

  • When Specific Resistance, Length of metal wire and Resistance is given and to ask Radius or Diameter of the wire, then put the below formula .

  • \tt{\red{\boxed{R\:=\:{\dfrac{\rho\:l}{A}}\:}}}

Where,

  • R = Resistance
  • \tt{\rho\:=\:Specific\:Resistance}
  • l = Length of metal wire
  • A = Area of metal wire = \tt{\pi\:r^2}

\bigstar \sf{\blue{\underline{\underline{\red{To\:Find:-}}}}}

  • The Diameter(D) of the wire .

\bigstar \sf{\blue{\underline{\underline{\red{SOLUTION:-}}}}}

♻️ GIVEN:-

  • \tt{Specific\:Resistance\:({\rho})\:=\:64\times10^{-6}\:Ohm.m\:}
  • Resistance (R) = 7 Ohm
  • Length (l) = 1.98 m

♻️ We have know that,

\tt{\:R\:=\:{\dfrac{\rho\:l}{A}}\:}

\tt{\implies\:A\:=\:{\dfrac{\rho\:l}{R}}\:}

\tt{\implies\:{\pi\:r^2}\:=\:{\dfrac{\rho\:l}{R}}\:}

\tt{\implies\:r\:=\:{\sqrt{\dfrac{\rho\:l}{\pi\:R}}}\:}

\tt{\implies\:r\:=\:{\sqrt{\dfrac{(64\times10^{-6})\times\:1.98}{3.14\times7}}}\:}

\tt{\implies\:radius\:=\:2.401\times10^{-3}\:m}

♻️ So, Diameter of Metal wire is,

\tt{\implies\:Diameter\:=\:2\times\:radius\:}

\tt{\red{\boxed{\implies\:Diameter\:=\:4.802\times10^{-3}\:m\:}}}

Similar questions