Math, asked by gjaat597, 3 months ago

Unit IV
8. (a) Evaluate the following integral :
√xlog (1+x) dx​

Answers

Answered by mathdude500
2

Basic Concept Used :-

Integration by Parts

Integration by Parts is a special method of integration that is often useful when two functions are multiplied together, but is also helpful in other ways.

See the rule:

  • ∫u v dx = u∫v dx −∫u' (∫v dx) dx

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

\large\underline{\sf{Solution-}}

\sf \longmapsto \displaystyle\int  \tt\:  \sqrt{x} \:   log(1 + x) dx

As we know that,

By using substitution method, we get.

\rm :\longmapsto\: \sqrt{x}  = y

\rm :\implies\:x =  {y}^{2}

\rm :\longmapsto\:Differentiate \:  w.r.t  \: x, we \: get

\rm :\longmapsto\:dx = 2y \: dy

Substituting all these values in given integral, we get

 = \sf \displaystyle\int \tt \: y log(1 +  {y}^{2} ) 2ydy

 =  2\sf \displaystyle\int \tt \: {y}^{2}  log(1 +  {y}^{2} )  \: dy

Now, Integrating using by parts,

Here,

  • v = y²

  • u = log(1 + y²)

 =  \tt \: 2 log(1 +  {y}^{2} )  \sf \displaystyle\int \tt \: {y}^{2} dy - 2 \sf \displaystyle\int \tt \:\bigg( \dfrac{d}{dy} log(1 +  {y}^{2} )  \sf \displaystyle\int \tt \: {y}^{2}dy  \bigg) dy

 \rm \:= \dfrac{2}{3}  log(1 +  {y}^{2} )  {y}^{3}  - 2 \sf \displaystyle\int \tt \:\dfrac{2y}{1 +  {y}^{2} } \times  \dfrac{ {y}^{3} }{3}

  \:  \:  \:  \:  \:  \:  \: \because \:  \boxed{ \bf \:  \sf \displaystyle\int \tt \: {x}^{2}dx = \dfrac{ {x}^{3} }{3}  \:  \:  \: and \:  \:  \: \dfrac{d}{dx}logx = \dfrac{1}{x} }

 \rm \:  = \dfrac{2 {y}^{3} }{3}  log(1 +  {y}^{2} )  - \dfrac{4}{3}  \sf \displaystyle\int \tt \:\dfrac{ {y}^{4} }{1 +  {y}^{2} } dy

 \rm \:  = \dfrac{2 {y}^{3} }{3}  log(1 +  {y}^{2} )  - \dfrac{4}{3}  \sf \displaystyle\int \tt \:\dfrac{ {y}^{4} - 1 + 1 }{1 +  {y}^{2} } dy

 \rm \:  = \dfrac{2 {y}^{3} }{3}  log(1 +  {y}^{2} )  - \dfrac{4}{3}  \sf \displaystyle\int \tt \:\dfrac{ {y}^{4} - 1 }{1 +  {y}^{2}} dy  \:  - \dfrac{4}{3}  \sf \displaystyle\int \tt \:\dfrac{dy}{ {y}^{2} + 1 }

 \rm \:  =  \: \dfrac{ {2y}^{3} }{3} log(1 +  {y}^{2} )  - \dfrac{4}{3} \sf \displaystyle\int \tt \:( {y}^{2} - 1)dy - \dfrac{4}{3} {tan }^{ - 1}y + c

 \rm \:  =  \: \dfrac{ {2y}^{3} }{3} log(1 +  {y}^{2} )  - \dfrac{4}{3} \bigg(\dfrac{ {y}^{3} }{3}  - y \bigg)  - \dfrac{4}{3} {tan }^{ - 1}y + c

 \rm \:  =  \: \dfrac{ {2y}^{3} }{3} log(1 +  {y}^{2} )  - \dfrac{4 {y}^{3} }{9} +  \dfrac{4y}{3}  - \dfrac{4}{3} {tan }^{ - 1}y + c

( On substituting back the value of y, we get)

 \rm \:  =  \: \dfrac{ {2( \sqrt{x}) }^{3} }{3} log(1 + x)  - \dfrac{4 {( \sqrt{x} )}^{3} }{9} +  \dfrac{4 \sqrt{x} }{3}  - \dfrac{4}{3} {tan }^{ - 1} \sqrt{x}  + c

 \rm \:  =  \: \dfrac{ {{2x \sqrt{x} }}}{3} log(1 + x )  - \dfrac{4 x \sqrt{x} }{9} +  \dfrac{4 \sqrt{x} }{3}  - \dfrac{4}{3} {tan }^{ - 1}\sqrt{x}  + c

Similar questions