Math, asked by anugund8383, 1 year ago

Unit vector perpendicular to vector a=-3i-2j-3k and b=2i+4j+6k

Answers

Answered by MaheswariS
23

Answer:

The unit vectors perpendicular to given vectors are ±\frac{-3\vec{j}+2\vec{k}}{\sqrt{13}}

Step-by-step explanation:

Unit vector perpendicular to vector a=-3i-2j-3k and b=2i+4j+6k

Formula used:

The unit vectors perpendicular to both \vec{a}\:and\:\vec{b} are

\frac{\vec{a}*\vec{b}}{|\vec{a}*\vec{b}|}

\vec{a}=-3\vec{i}-2\vec{j}-3\vec{k}

\vec{b}=2\vec{i}+4\vec{j}+6\vec{k}

\vec{a}*\vec{b}=\left|\begin{array}{ccc}\vec{i}&\vec{j}&\vec{k}\\3&-2&-3\\2&4&6\end{array}\right|

\vec{a}*\vec{b}=\vec{i}(-12+12)-\vec{j}(18+6)+\vec{k}(12+4)

\vec{a}*\vec{b}=-24\vec{j}+16\vec{k}

\implies\:\vec{a}*\vec{b}=8(-3\vec{j}+2\vec{k})

|\vec{a}*\vec{b}|=8\sqrt{(-3)^2+2^2}

|\vec{a}*\vec{b}|=8\sqrt{9+4}

\implies\:|\vec{a}*\vec{b}|=8\sqrt{13}

Now,

The unit vectors perpendicular to both \vec{a}\:and\:\vec{b} are

±\frac{\vec{a}*\vec{b}}{|\vec{a}*\vec{b}|}

\frac{8(-3\vec{j}+2\vec{k}}{8\sqrt{13})}

\frac{-3\vec{j}+2\vec{k}}{\sqrt{13}}

Answered by tapaswinibehera1980
9
The dot and cross product has been used here
So the answer is here
Attachments:
Similar questions