Math, asked by rajesh6774, 1 year ago

UPSC square + 1 upon x square is equal to 51 then x cube minus one upon x cube is equal to what

Answers

Answered by amritanshu6
0
x² + 1/x² = 27

x² + 1/x² - 2 = 27 - 2

x² + 1/x² - 2 × x × 1/x = 25

( x - 1/x )² = 5²

x - 1/x = ± 5
Answered by BrainlyKing5
4
\Large{\bold{Hey\:\;\;Mate\;\;\:Here\:\:\:Is\:\;\;Your\;\;\:Answers}}

\underline{\bold{Given}}

\bold{{x}^{2} + \frac{1}{ {x}^{2} } = 51}

\bold{And\: We \:Need \:To\: Find...}

 \bold{{x}^{3} - \frac{1}{ {x}^{3} } = ?}

So Now Let's Move For Solution ....

\underline{\bold{Solution}}

Now According To Question It's Given That  {x}^{2} + \frac{1}{ {X}^{2} } = 51

Now To Find ...

\bold{ {x}^{3} - \frac{1}{ {x}^{3} }}

Follow The Simple Step ...

\underline{\bold{Step-1)\: Find\: Value \:Of\:\:\:{x}\:- \frac{1}{ x} }}

So Now We Know By Identity ...

\bold{{(a - b)}^{2} \:= {a}^{2} \:+ \:{b}^{2} \:- \:2ab}

That

\bold{ {(x\: - \:\frac{1}{x})}^{2} = \: {x}^{2} \:+ \:\frac{1}{ {x}^{2} } - 2(x) (\frac{1}{x} )}

That Is ...

 \bold{{(x - \frac{1}{x})}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } \: - 2 \: (by \: \: \: cancelling \: x)}

So Now In Question Its Given That

\bold{ {x}^{2} + \frac{1}{ {x}^{2} } = 51}

Now Putting This Value In the Obtained Equation We Have ...

\bold{ {(x - \frac{1}{x}) }^{2} = 51 - 2}

That Is ...

\bold{ {(x - \frac{1}{x} )}^{2} = 49}

Now Moving Square To RHS We Have

\bold{x - \frac{1}{x} = \sqrt{49}}

That Is ...

\bold{x - \frac{1}{x} = 7}

So Now We Have Value Of

\boxed{\bold{x - \frac{1}{x} = 7}}

\undelrine{\bold{Step -2)\:Solve\:For\:{x}^{3} -\frac {1}{{x}^{3}} }

Now By Identity ..

\boxed{ \bold{{(a - b)}^{3} = {a}^{3} - {b}^{3} - 3ab \: (a - b)}}

We Have ..

\bold{ {(x - \frac{1}{x})}^{3} = {x}^{3} - \frac{1}{ {x}^{3} } - 3(x)( \frac{1}{x}) \: (x - \frac{1}{x} )}

That is ...

 \bold{{(x - \frac{1}{x} )}^{3} = {x}^{3} - \frac{1}{ {x}^{3} } - 3(x - \frac{1}{x} )}

Now In Above Method We Have Found Value Of

\bold{x - \frac{1}{x} = 7}

Now Putting This Value In This Obtained Equation We Have ...

\bold{ {7}^{3} = {x}^{3} - \frac{1}{ {x}^{3} } - 3(7)}

That Is ...

\bold{343 = {x}^{3} - \frac{1}{ {x}^{3} } - 21}

That is ...

\bold{343 + 21 = {x}^{3} - \frac{1}{ {x}^{3} } }

That Is ..

\bold{364 = {x}^{3} - \frac{1}{ {x}^{3} } }

Therefore Value Of

\boxed{\bold{ {x}^{3} - \frac{1}{ {x}^{3} } = 364}}

\bold{Hence\:The\: Required\:Answer\:Is....}

\boxed{\mathfrak{\bold{364} } }

\Large{\bold{Thanks...}}
Similar questions