URGENT:- if (a+b), a, (a-b) are zeroes of polynomial x^3-6x^2+11x-6 then find a and b
Answers
Answered by
1
The zeroes of p(x) are (a-b), a, (a+b).
Sum of roots:
Thus a=2.
Now,
Product of roots:
Therefore a=2, b=1 or b= -1.
Answered by
0
Answer:
a = 2, b = ±1
Step-by-step explanation:
Given Equation is x³ - 6x² + 11x - 6.
On comparing with ax³ + bx³ + cx + d.
We get a = 1, b = -6, c = 11, d = -6.
Let zeroes are α = a + b, β = a, γ = a - b.
(i) Sum of zeroes:
α + β + γ = -b/a
⇒ a + b + a + a - b = 6
⇒ 3a = 6
⇒ a = 2.
(ii) Product of zeroes:
αβ + βγ + γα = c/a
⇒ (a+b)(a) + (a)(a-b) + (a-b)(a+b) = 11
⇒ a² + ab + a² - ab + a² - b² = 11
⇒ 3a² - b² = 11
⇒ 3(2)² - b² = 11
⇒ 12 - b² = 11
⇒ -b² = 11 - 12
⇒ -b² = -1
⇒ b = 1
Therefore, the values are a = 2 and b = ±1
Hope it helps!
Similar questions