Math, asked by keoyo, 1 month ago

URGENT
Let f and g be twice differentiable functions such that fog(x) = x^3 and g(1) = 2, g'(1) = 1, g" (1) = 4 then f" (2) is equal to
A) 0
B) 2
c) 4
d) -6​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

Let f and g be twice differentiable functions such that

  • g(1) = 2

  • g'(1) = 1

  • g" (1) = 4

and

\rm :\longmapsto\:fog(x) =  {x}^{3}

\rm :\longmapsto\:f[g(x)] =  {x}^{3}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f[g(x)] =  \dfrac{d}{dx} {x}^{3}

\rm :\longmapsto\:f'[g(x)]\dfrac{d}{dx} g(x) =  {3x}^{3 - 1}

\rm :\longmapsto\:f'[g(x)] \: g'(x) =  {3x}^{2}

On substituting x = 1, we get

\rm :\longmapsto\:f'[g(1)] \: g'(1) =  3

\rm :\longmapsto\:f'[2] \:  \times 1 =  3

\rm :\longmapsto\:\boxed{ \tt{ \: f'[2]  =  3 \: }} -  -  -  - (1)

Now, Again, from above we have

\rm :\longmapsto\:f'[g(x)] \: g'(x) =  {3x}^{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f'[g(x)] \: g'(x) =  \dfrac{d}{dx} {3x}^{2}

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} u.v \:  =  \: u \: \dfrac{d}{dx} v \:  +  \: v \: \dfrac{d}{dx} u \: }}

So, using this, we get

\rm :\longmapsto\:f'[g(x)]\dfrac{d}{dx} g'(x) + g'(x)\dfrac{d}{dx} f'[g(x)] = 6x

\rm :\longmapsto\:f'[g(x)] g''(x) + g'(x) f''[g(x)] g'(x)= 6x

On substituting x = 1, we get

\rm :\longmapsto\:f'[g(1)] g''(1) + g'(1) f''[g(1)] g'(1)= 6

\rm :\longmapsto\:f'[2]  \times (4) + 1 \times  f''[2]  \times 1= 6

\rm :\longmapsto\:3  \times 4 + f''[2]  = 6

\rm :\longmapsto\:12 + f''[2]  = 6

\rm :\longmapsto\: f''[2]  = 6 - 12

\rm :\longmapsto\: \boxed{ \tt{ \: f''[2]   \: =  -  \: 6 \: }}

  • Hence, Option (d) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions