Math, asked by yams36, 1 year ago

Urgent mate plz help ​

Attachments:

Answers

Answered by Anonymous
9

Question :-

If x = (√3 + √2)/(√3 - √2) and y = (√3 - √2)/(√3 + √2), find the value of x² + y²

Answer :-

Value of x² + y² = 98.

Solution :-

x = (√3 + √2)/(√3 - √2)

y = (√3 - √2)/(√3 + √2)

Finding the value of x + y

 \sf x + y =  \dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  } +  \dfrac{ \sqrt{3} -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }   \\  \\  \\  \sf =  \dfrac{( \sqrt{3} +  \sqrt{2} )( \sqrt{3} +  \sqrt{2}) + ( \sqrt{3}  -  \sqrt{2})( \sqrt{3} -  \sqrt{2})}{( \sqrt{3}  -  \sqrt{2})( \sqrt{3} +  \sqrt{2})   }  \qquad \left[taking\ lcm \right] \\  \\  \\  \sf = \dfrac{ {( \sqrt{3} +  \sqrt{2} )}^{2} +  {( \sqrt{3} -  \sqrt{2} )}^{2}  }{ {( \sqrt{3}) }^{2} -  {( \sqrt{2}) }^{2}  }  \qquad \left[ \because (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \right] \\  \\  \\  \sf =  \dfrac{ {( \sqrt{3})}^{2} + 2( \sqrt{3})( \sqrt{2}) +  {( \sqrt{2} )}^{2} +  {( \sqrt{3}) }^{2}  - 2( \sqrt{3})( \sqrt{2}) +  {( \sqrt{2}) }^{2}  }{3 - 2}  \qquad \left[  {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}  \ and \  {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}  \right] \\  \\  \\  \sf =  \dfrac{3 + 2 + 3 + 2}{1}  \\  \\  \\  \rm x + y = 10

Finding the value of xy

 \sf xy =   \bigg(\dfrac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \bigg) \bigg( \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \bigg) \\  \\  \\  \sf =  \dfrac{( \sqrt{3} +  \sqrt{2})( \sqrt{3}  -  \sqrt{2})  }{( \sqrt{3} -  \sqrt{2})( \sqrt{3}  +  \sqrt{2}  )}  \\  \\  \\  \sf  =  \dfrac{ {( \sqrt{3})}^{2}  -  {( \sqrt{2}) }^{2} }{ {( \sqrt{3})}^{2}  -  {( \sqrt{2} )}^{2} }  \qquad \left[  \because (a + b)(a - b) =  {a}^{2}  -  {b}^{2} \right] \\  \\  \\  \sf =  \dfrac{3 - 2}{3 - 2}  \\  \\  \\  \rm xy = 1

We know that

(x + y)² = x² + y² + 2xy

Here

• x + y = 10

• xy = 1

By substituting the values in the above identity

⇒ (10)² = x² + y² + 2(1)

⇒ 100 = x² + y² + 2

⇒ 100 - 2 = x² + y²

⇒ 98 = x² + y²

⇒ x² + y² = 98

Therefore the value of x² + y² = 98.

Answered by rishu6845
5

Answer:

plzzz follow me ***********************

Attachments:
Similar questions