Math, asked by farah12345, 10 months ago

Urgent please answer


if \: cot( \frac{3\pi}{2}  - b) =  \sqrt{3}  \\  then \: prove \: that \\  \: cos3b = 4{cos}^{3}b \:   -  \: 3cosb

Answers

Answered by BendingReality
15

Answer:

\displaystyle{\cos 3b = 4\cos^3 b - 3 \cos b \ \text{Proved}}

Step-by-step explanation:

Given :

\displaystyle{\cot\left(\frac{3\pi}{2} -b\right)=\sqrt{3}}

We know :

\displaystyle{\cot\left(\frac{3\pi}{2} -\theta\right) = \tan \theta}

\displaystyle{\cot\left(\frac{3\pi}{2} -b\right)=\sqrt{3}}\\\\\\\displaystyle{\rightarrow \tan b=\sqrt{3}}

\display\text{Rewrite $\sqrt{3}$ as $\tan\dfrac{\pi}{3}$}

\displaystyle{\tan b = \tan\dfrac{\pi}{3} }\\\\\\\displaystyle{\implies b= \dfrac{\pi}{3} }

\displaystyle{\cos 3b = 4\cos^3 b - 3 \cos b}

Now putting value of b here :

\displaystyle{\text{L.H.S.}=\cos 3b}\\\\\\\displaystyle{\implies \cos 3\times\frac{\pi}{3} }\\\\\\\displaystyle{\implies \cos \pi}\\\\\\\displaystyle{\implies -1.}

\displaystyle{\text{R.H.S.}= 4\cos^3 b - 3 \cos b}\\\\\\\displaystyle{\implies 4\cos^3 \frac{\pi}{3}  - 3 \cos \frac{\pi}{3}}\\\\\\\displaystyle{\implies 4\left(\frac{1}{8}\right) -3\left(\frac{1}{2} \right)}\\\\\\\displaystyle{\implies \frac{1}{2} -\frac{3}{2}}\\\\\\\displaystyle{\implies -1}

\display \large \text{Since L.H.S. = R.H.S. , proved.}

Similar questions