URGENT
prove sin(n+1)x sin(n+2)x +cos(n+1)x cos(n+2)x=cos x
Answers
Answered by
2
prove: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=cosx
***
Identity: cos(s-t)
=cos(s)x*cos(t)x+sin(s)x*sin(t)x cos(s-t)
=cos(s)x*cos(t)x+sin(s)x*sin(t)x
cos((n+1)x)-((n+2)x=cos(n+1)x*cos(n+2)x+sin(n+1)x*sin(n+2)x
cos((nx+x)-(nx+2x))
=cos(n+1)x*cos(n+2)x+sin(n+1)x*sin(n+2)x
cos((nx+x)-(nx+2x))
=cos(nx+x-nx-2x)
=cos(-x)=cos(x)
verified: left side=right side
***
Identity: cos(s-t)
=cos(s)x*cos(t)x+sin(s)x*sin(t)x cos(s-t)
=cos(s)x*cos(t)x+sin(s)x*sin(t)x
cos((n+1)x)-((n+2)x=cos(n+1)x*cos(n+2)x+sin(n+1)x*sin(n+2)x
cos((nx+x)-(nx+2x))
=cos(n+1)x*cos(n+2)x+sin(n+1)x*sin(n+2)x
cos((nx+x)-(nx+2x))
=cos(nx+x-nx-2x)
=cos(-x)=cos(x)
verified: left side=right side
randhir8:
if u like my answer u can add this to brandlist
Answered by
17
Solution:
sin(n+1)x sin(n+2)x +cos(n+1)x cos(n+2)x=cos x
We take LHS
=> sin(n+1)x sin(n+2)x +cos(n+1)x cos(n+2)x
Let (n + 1)x = A
and (n + 2)x = B
So,
=> sin A sin B + cos A cos B
=> cos (A - B)
=> cos [(n - 1)x - (n - 2)x]
=> cos[nx + x - nx - 2n]
=> cos (-x)
=> cos x
So, LHS = RHS
Hence Proved!!
Similar questions