Math, asked by salonijain3003, 11 months ago

use 4 times 4 to get 100​

Answers

Answered by shadowsabers03
3

We know that,

\displaystyle\longrightarrow\sf{100=4\times 25}

So we may represent 25 in three 4's.

We see that,

\displaystyle\longrightarrow\sf{25=24+1}

And,

  • \displaystyle\sf{24=4!}

  • \displaystyle\sf{1=\dfrac {4}{4}}

Then,

\displaystyle\longrightarrow\sf{25=4!+\dfrac{4}{4}}

Hence,

\displaystyle\longrightarrow\sf{\underline {\underline {100=4\left (4!+\dfrac {4}{4}\right)}}\quad\quad\dots(1)}

This is one such possibility I've got. Well, there may be more than one possibility too. Some more possibilities found are,

\displaystyle\longrightarrow\sf{\underline {\underline {100=\left (4\sqrt4+\sqrt4\right)^{\sqrt4}}}}

\displaystyle\longrightarrow\sf{\underline {\underline {100=4!\times 4+\sqrt 4+\sqrt4}}}

\displaystyle\longrightarrow\sf{\underline {\underline {100=4!\times 4+\sqrt 4\times\sqrt4}}}

From (1) we can obtain another ones!

\displaystyle\longrightarrow\sf{\underline {\underline {100=4\left (4!+\dfrac {\sqrt4}{\sqrt4}\right)}}}

\displaystyle\longrightarrow\sf{\underline {\underline {100=4\left (4!+\dfrac {4!}{4!}\right)}}}

And there should be many more or not!

Similar questions