Use (a - b)2 = a - 2ab + b2 to evaluate the following
By using suitable identities, evaluate the following:
(i) (103)^3
(i) (99)^3
Answers
Answered by
5
I) 103 = 100 + 3
so, 103^2 = (100 + 3)^2
=> 100^2 +2(100)(3) + 3^2
=> 10000 + 600 + 9
=> 10609.
ii) 99 = 100 -1
so, 99^2 = (100 - 1)^2
=> 100^2 -2(100)(1) + 1^2
=> 10000 - 200 + 1
=> 9801
Please mark it as brainliest.
Answered by
102
Given
By using suitable identities, evaluate the following:
(i) (103)^3
(i) (99)^3
Solution
- (103)³
→ (100 + 3)³
★ Apply identity :
(a + b)³ = a³ + b³ + 3ab
→ (100)³ + (3)³ + 3 × 100 × 3 (100 + 3)
→ 1000000 + 27 + 900 × 103
→ 1000027 + 92700
→ 192727
_________________________
- (99)³
→ (100 - 1)³
★ Apply identity :
(a - b)³ = a³ - b³ - 3ab(a - b)
→ (100)³ - (1)³ - 3 × 100 × 1(100 - 1)
→ 1000000 - 1 - 300 × 99
→ 999999 - 29700
→ 970299
Additional Information
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- a³ - b³ = (a - b)(a² + ab + b²)
- a³ + b³ = (a + b)(a² - ab + b²)
Similar questions