Math, asked by Anonymous, 5 months ago

Use a suitable identity find the value of:-
 {97}^{2}

Answers

Answered by sinharay111
1

Answer:

can you take a picture from your book of a solution and give me so I will be give your answer

Hope it helps you and make me brainlist and follow me...

Answered by shaktisrivastava1234
13

 \huge \fbox{Answer}

 \large  \underline{\frak{ \color{red}Given:}}

 \mapsto \sf{ {97}^{2} }

 \large  \underline{\frak{ \color{plum}To  \: find:}}

{ \leadsto \sf{Using \: suitable \: identity,find \: the \: value \: of \:  {97}^{2} .}}

 \large  \underline{\frak{ \color{blue}Concept  \: used:}}

{ \rightarrow \sf{We  \: write \:  {97}^{2} \: in \: the \: form \: of \:  {(90 + 7)}^{2}.}}

 \large  \underline{\frak{ \color{indigo}Identity  \: used:}}

 \Rightarrow \sf{ {(a  + b)}^{2} =  {(a)}^{2}  + 2ab +  {(b)}^{2} }

 \large  \underline{\frak{ \color{indi}According  \: to \:  Question:}}

 {: \implies \sf{ {(a  +  b)}^{2} =  {(a)}^{2}  + 2ab +  {(b)}^{2} }}

 {: \implies \sf{ {(90 + 7)}^{2} =  {(90)}^{2}  + 2 \times 90 \times 7+  {(7)}^{2} }}

 {: \implies \sf{ {(97)}^{2} = 8,100+ 1,260+ 49 }}

 {: \implies \sf{ {9,409  = 9,409 }}}


Anonymous: Adorable ^^
shaktisrivastava1234: Thanks
shaktisrivastava1234: If helpful give ♥️.
Anonymous: Given ^^''
shaktisrivastava1234: New user
angelgirlnew: ✌nice ✅
Similar questions