Math, asked by roobeengurung7777777, 12 hours ago

use a suitable identity to expand the following (p/8 -3q/10)² step by step​

Answers

Answered by syedshaeeque
0

Given: (\frac{p}{8}-\frac{3q}{10})^{2}

Here, We have to find the common denominator and solve,

(\frac{p}{8}+\frac{-3q}{10})^{2}

(\frac{5p}{40}+\frac{4(-3)q}{40} )^{2}

Now, combining the fraction with common denominator,

(\frac{5p}{40}+\frac{4(-3)q}{40} )^{2}

(\frac{5p+4(-3)q}{40})^{2}

Further, multiplying the numbers,

(\frac{5p+4(-3)q}{40})^{2}

We get,

( \frac {5p - 12q} {40})^{2}  is the final answer.

Answered by amitnrw
3

Using the identity (x-y)^2=x^2+y^2-2xy :

\left(\dfrac{p}{8} -\dfrac{3q}{10}\right)^2=\dfrac{p^2}{64} + \dfrac{9q^2}{100}  -  \dfrac{3qp}{40}  

Given Expression is:

\left(\dfrac{p}{8} -\dfrac{3q}{10}\right)^2

To Find:

Expand Using Suitable Identity

Step 1 :

Identity to be used:

(x-y)^2=x^2+y^2-2xy

Step 2 :

Compare the Identity used and given expression

x = p/8

y = 3q/10

Step 3 :

Substitute the values in RHS of identity and simplify

\left(\dfrac{p}{8}\right)^2 +\left(\dfrac{3q}{10}\right)^2-2\left(\dfrac{p}{8}\right)\left(\dfrac{3q}{10}\right)

=\dfrac{p^2}{64} + \dfrac{9q^2}{100}  -  \dfrac{3qp}{40}

\left(\dfrac{p}{8} -\dfrac{3q}{10}\right)^2=\dfrac{p^2}{64} + \dfrac{9q^2}{100}  -  \dfrac{3qp}{40}

Similar questions