Use a suitable identity to find the product of (3a - 1/3) (3a + 1/3)
Answers
Step-by-step explanation:
Given : Expression
To find : Use a suitable identity to find the product of expression ?
Solution :
Expression
Using algebraic identity,
Here, x=3a and
Substitute the values,
Therefore,
#Learn more
Using suitable identities evaluate (1÷3a-b)^3
https://brainly.in/question/3925260
Step-by-step explanation:
Expression (3a+\frac{1}{3})(3a-\frac{1}{3})(3a+
3
1
)(3a−
3
1
)
To find : Use a suitable identity to find the product of expression ?
Solution :
Expression (3a+\frac{1}{3})(3a-\frac{1}{3})(3a+
3
1
)(3a−
3
1
)
Using algebraic identity,
(x+y)(x-y)=x^2-y^2(x+y)(x−y)=x
2
−y
2
Here, x=3a and y=\frac{1}{3}y=
3
1
Substitute the values,
(3a+\frac{1}{3})(3a-\frac{1}{3})=(3a)^2-(\frac{1}{3})^2(3a+
3
1
)(3a−
3
1
)=(3a)
2
−(
3
1
)
2
(3a+\frac{1}{3})(3a-\frac{1}{3})=9a^2-\frac{1}{9}(3a+
3
1
)(3a−
3
1
)=9a
2
−
9
1
(3a+\frac{1}{3})(3a-\frac{1}{3})=\frac{81a^2-1}{9}(3a+
3
1
)(3a−
3
1
)=
9
81a
2
−1
Therefore, (3a+\frac{1}{3})(3a-\frac{1}{3})=\frac{81a^2-1}{9}(3a+
3
1
)(3a−
3
1
)=
9
81a
2
−1
#Learn more
Using suitable identities evaluate (1÷3a-b)^3
https://brainly.in/question/3925260