Math, asked by Thesceretgirl, 5 months ago

use a suitable identity to get each of the following products
1) \: (2a - 7)(2a - 7)
2) \: (x + 3)(x + 3)
3) \: (7a - 9b)(7a - 9b)

NO SPAM ❌ ​

Answers

Answered by Anonymous
3

Answer:

A suitable identity to get each of the following products

[tex]1) \: (2a - 7)(2a - 7)

[tex]2) \: (x + 3)(x + 3)

[tex]3) \: (7a - 9b)(7a - 9b)

Answered by IdyllicAurora
30

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the concept of Algebraic Identities has been used. We see that the expressions are multiplied by themselves. So we can apply appropriate identity and then solve them.

Let's do it !!

_______________________________________________

Identity Used :-

\\\;\boxed{\sf{(a\;-\;b)^{2}\;=\;\bf{a^{2}\;-\;2ab\;+\;b^{2}}}}

\\\;\boxed{\sf{(a\;+\;b)^{2}\;=\;\bf{a^{2}\;+\;2ab\;+\;b^{2}}}}

_______________________________________________

Solution :-

1.) (2a - 7)(2a - 7)

2.) (x + 3)(x + 3)

3.) (7a - 9b)(7a - 9b)

_______________________________________________

1.) (2a - 7)(2a - 7) ::

Here its, given that,

✒ (2a - 7)(2a - 7) = (2a - 7)²

Here, a = 2a and b = 7

Now applying the identity here, we get,

\\\;\;\sf{:\rightarrow\;\;(a\;-\;b)^{2}\;=\;\bf{a^{2}\;-\;2ab\;+\;b^{2}}}

\\\;\;\sf{:\rightarrow\;\;(2a\;-\;7)^{2}\;=\;\bf{(2a)^{2}\;-\;2(2a)(7)\;+\;(7)^{2}}}

\\\;\;\bf{:\Longrightarrow\;\;(2a\;-\;7)^{2}\;=\;\bf{4a^{2}\;-\;28a\;+\;49}}

\\\;\underline{\boxed{\tt{(2a\;-\;7)(2a\;-\;7)\;=\;\bf{4a^{2}\;-\;28a\;+\;49}}}}

_______________________________________________

2.) (x + 3)(x + 3) ::

Here its given that,

✒ (x + 3)(x + 3) = (x + 3)²

Here, a = x and b = 3

Now applying the identity here, we get,

\\\;\;\sf{:\rightarrow\;\;(a\;+\;b)^{2}\;=\;\bf{a^{2}\;+\;2ab\;+\;b^{2}}}

\\\;\;\sf{:\rightarrow\;\;(x\;+\;3)^{2}\;=\;\bf{(x)^{2}\;+\;2(x)(3)\;+\;(3)^{2}}}

\\\;\;\bf{:\Longrightarrow\;\;(x\;-\;3)^{2}\;=\;\bf{x^{2}\;+\;6x\;+\;9}}

\\\;\underline{\boxed{\tt{(x\;+\;3)(x\;+\;3)\;=\;\bf{x^{2}\;+\;6x\;+\;9}}}}

_______________________________________________

3.) (7a - 9b)(7a - 9b) ::

Here its given that,

✒ (7a - 9b)(7a - 9b) = (7a - 9b)²

Here, a = 7a and b = 9b

By applying the identity here, we get,

\\\;\;\sf{:\rightarrow\;\;(a\;-\;b)^{2}\;=\;\bf{a^{2}\;-\;2ab\;+\;b^{2}}}

\\\;\;\sf{:\rightarrow\;\;(7a\;-\;9b)^{2}\;=\;\bf{(7a)^{2}\;-\;2(7a)(9b)\;+\;(9b)^{2}}}

\\\;\;\bf{:\Longrightarrow\;\;(2a\;-\;7)^{2}\;=\;\bf{49a^{2}\;-\;126ab\;+\;81b^{2}}}

\\\;\underline{\boxed{\tt{(7a\;-\;9b)(7a\;-\;9b)\;=\;\bf{49a^{2}\;-\;126ab\;+\;81b^{2}}}}}

_______________________________________________

More to know :-

\\\;\sf{\leadsto\;\;a^{2}\;-\;b^{2}\;=\;(a\;+\;b)(a\;-\;b)}

\\\;\sf{\leadsto\;\;(a\;+\;b\;+\;c)^{2}\;=\;a^{2}\;+\;b^{2}\;+\;c^{2}\;+\;2ab\;+\;2bc\;+\;2ac}

\\\;\sf{\leadsto\;\;(x\;+\;a)(x\;+\;b)\;=\;x^{2}\;+\;(a\;+\;b)x\;+\;ab}

\\\;\sf{\leadsto\;\;(a\;+\;b)^{3}\;=\;a^{3}\;+\;b^{3}\;+\;3ab(a\;+\;b)}

\\\;\sf{\leadsto\;\;(a\;-\;b)^{3}\;=\;a^{3}\;-\;b^{3}\;-\;3ab(a\;-\;b)}

Similar questions