Math, asked by camilajjones2, 11 months ago

Use De Moivre's theorem to write the complex number in trigonometric form. (cospi/4 + isinpi/4)^3

Answers

Answered by sourasghotekar123
0

Given complex number ,

 ({ \cos( \frac{\pi}{4} )  + i \sin( \frac{\pi}{4} )) }^{3}

to find :

write the complex number in trigonometric form by using DE movier theorem

solution:

De movier's theorem :

 {( \cos(x)  + i \sin(x)) }^{n}  = ( \cos(nx)  + i \sin(nx) )

=>

( \cos( \frac{\pi}{4} )  + i \sin( \frac{\pi}{4} ) ) ^{3}  =  \cos( \frac{3\pi}{4}  )  + i \sin( \frac{3\pi}{4} )

 \:  \:  \:  =  \cos(\pi -  \frac{\pi}{4} )  + i \sin(\pi -  \frac{\pi}{4} )

{\cos(\pi -  x )  =  -  \cos(x) }

( \sin(\pi - x)  =  \sin(x) )

 =  -  \cos( \frac{\pi}{4} )  + i \sin( \frac{\pi}{4} )

 =  -  \frac{1 }{ \sqrt{2} }  + i \frac{1}{ \sqrt{2} }

therefore ,

The complex number in trigonometric form :

 =  -  \frac{1 }{ \sqrt{2} }  + i \frac{1}{ \sqrt{2} }

Answered by syed2020ashaels
0

Answer:

As per the data given in the above question

Given the complex number

z_1 = (\cos\frac{\pi}{4} + i \sin\frac{\pi}{4})

we know that according to De Moivre's Theorem

for a complex number,

z = |z|(\cos\theta + i \sin\theta)

z^n = |z|^n(\cos n \theta + i \sin n \theta)

we want to find the value of norm of z_1

applying the formula

|z_1| = \sqrt{(\cos\frac{\pi}{4})^2 + (\sin\frac{\pi}{4})^2} = \sqrt{1} = 1

so now according to De Moivre's Theorem,

we have n=3 and \theta = \frac{\pi}{4}

{z_1}^3 = (\cos\frac{\pi}{4} + i \sin\frac{\pi}{4})^3\\{z_1}^3 = {|z_1|}^3(\cos 3 \frac{\pi}{4} + i \sin3\frac{\pi}{4})\\{z_1}^3 = {1}^3({ - \frac{1}{\sqrt2}} + i {\frac{1}{\sqrt2}})\\ {z_1}^3 = ({ - \frac{1}{\sqrt2}} + i {\frac{1}{\sqrt2}})

Hence the complex number in trigonometry form using De Moiver's theorem is ({ - \frac{1}{\sqrt2}} + i {\frac{1}{\sqrt2}}) .

Similar questions