Math, asked by ishitadma8207, 1 year ago

Use division algorithm to find the hcf of 4052 and 12576

Answers

Answered by rishika79
3

Answer:

Step-by-step explanation:

Step 1: Since 12576 > 4052, apply the division lemma to 12576 and 4052, to get

12576 = 4052 × 3 + 420

Step 2: Since the remainder 420 ≠ 0, apply the division lemma to 4052 and 420, to get

4052 = 420 × 9 + 272

Step 3: Consider the new divisor 420 and the new remainder 272, and apply the division lemma to get

420 = 272 × 1 + 148

Consider the new divisor 272 and the new remainder 148, and apply the division lemma to get

272 = 148 × 1 + 124

Consider the new divisor 148 and the new remainder 124, and apply the division lemma to get

148 = 124 × 1 + 24

Consider the new divisor 124 and the new remainder 24, and apply the division lemma to get

124 = 24 × 5 + 4

Consider the new divisor 24 and the new remainder 4, and apply the division lemma to get

24 = 4 × 6 + 0

The remainder has now become zero, so procedure stops. Since the divisor at this stage is 4, the HCF of 12576 and 4052 is 4.

Hope it helps you....

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
2

\huge\sf\pink{Answer}

☞ HCF of (4052,12576) = 4

\rule{110}1

\huge\sf\blue{Given}

➝ 4052 and 12576

\rule{110}1

\huge\sf\gray{To \:Find}

✭ Their HCF

\rule{110}1

\huge\sf\purple{Steps}

\normalsize\sf\ According\: to \: Euclid \: Division \: algorithm, \\ \normalsize\sf\ a = bq + r \: where, 0 \leq r \textless \: b

\underline{\bigstar\:\sf{H.C.F \: of \: 4052 \: \& \: 12576 :}}

\normalsize\sf\ Since, \: 12576 \textgreater 4052 \\ \\ \normalsize\  \dashrightarrow\sf\ 12576 = 4052 \times\ 3 + 420 \\ \:\:\:\qquad\footnotesize\qquad\sf{(r \neq 0)} \\ \\ \normalsize\  \dashrightarrow\sf\ 4052 = 420 \times\ 9 + 272 \\\qquad\footnotesize\qquad\:\:\:\:\:\sf{(r \neq 0)} \\ \\  \normalsize\  \dashrightarrow\sf\ 420 = 272 \times\ 1 + 148 \\ \qquad\footnotesize\qquad\:\:\:\:\:\sf{(r \neq 0)} \\ \\  \normalsize\  \dashrightarrow\sf\ 272 = 148 \times\ 1 + 124 \\ \qquad\footnotesize\qquad\:\:\:\:\:\sf{(r \neq 0)} \\ \\  \normalsize\  \dashrightarrow\sf\ 148 = 124 \times\ 1 + 24 \\ \qquad\footnotesize\qquad\:\:\:\:\:\sf{(r \neq 0)} \\ \\  \normalsize\  \dashrightarrow\sf\ 124 = 24 \times\ 5 + 4 \\ \qquad\footnotesize\qquad\:\:\:\:\:\sf{(r \neq 0)} \\ \\ \\ \normalsize\  \dashrightarrow\sf\ 24 = 4 \times\ 6 + 0 \\ \qquad\footnotesize\qquad\:\:\:\:\:\sf{(r = 0)} \\ \\  \qquad\begin{aligned}\bf{\maltese}\:\:\sf HCF(4052,12576)= 4 \:\:\quad\end{aligned}

\rule{170}3

Similar questions