Math, asked by damuluri456, 11 hours ago

Use division algorithm to show that the cube of any positive integer is of the form 9 m 9m + 1 or 9m + 8.​

Answers

Answered by tennetiraj86
4

Step-by-step explanation:

Given :-

a positive integer

To find :-

Use division algorithm to show that the cube of any positive integer is of the form 9 m or 9m + 1 or 9m + 8.

Solution :-

Euclid's Division Algorithm:-

For any two positive integers a and b there exist two positive integers q and r satisfying a=bq+r, where 0≤r<b.

Consider a = 9q + r ------------------(1)

Where 0≤r<9

The possible values of r = 0,1,2,3,4,5,6,7,8

Case-1:-

If r = 0 in (1) then

=> a = 9q+0

=> a = 9q

On cubing both sides then

=> a³ = (9q)³

=> a³ = 729q³

=> a³ = 9(81q³)

=> a³ = 9m ------------------(2)

Where ,m = 81q³ ,m is an integer

Case -2:-

If r = 1 in (1) then

=> a = 9q+1

On cubing both sides then

=> a³ = (9q+1)³

=> a³ = (9q)³+3(9q)²(1)+3(9q)(1)²+(1)³

=> a³ = 729q³ + 3(81q²)+27q+1

=> a³ = 729q³ + 243q²+27q+1

=> a³ = 9(81q³+27q²+3q)+1

=> a³ = 9m+1 ------------------(3)

Where ,m = 81q³+27q²+3q ,m is an integer

Case-3:-

If r = 2 in (1) then

=> a = 9q+2

On cubing both sides then

=> a³ = (9q+2)³

=> a³ = (9q)³+3(9q)²(2)+3(9q)(2)²+(2)³

=> a³ = 729q³ + 6(81q²)+27q(4)+8

=> a³ = 729q³ + 486q²+108q+8

=> a³ = 9(81q³+54q²+12q)+8

=> a³ = 9m+8 ------------------(4)

Where ,m = 81q³+54q²+12q ,m is an integer.

Case-4:-

If r = 3 in (1) then

=> a = 9q+3

On cubing both sides then

=> a³ = (9q+3)³

=> a³ = (9q)³+3(9q)²(3)+3(9q)(3)²+(3)³

=> a³ = 729q³ + 9(81q²)+27q(9)+27

=> a³ = 729q³ + 729q²+243q+27

=> a³ = 9(81q³+81q²+27q+3)

=> a³ = 9m------------------(5)

Where ,m = 81q³+81q²+27q+3 ,m is an integer.

Case-5:-

If r = 4 in (1) then

=> a = 9q+4

On cubing both sides then

=> a³ = (9q+4)³

=> a³ = (9q)³+3(9q)²(4)+3(9q)(4)²+(4)³

=> a³ = 729q³ + 12(81q²)+27q(16)+64

=> a³ = 729q³ + 972q²+432q+64

=> a³ = 729q³ + 972q²+432q+63+1

=> a³ = 9(81q³+108q²+48q+7)+1

=> a³ = 9m+1 ------------------(6)

Where ,m = 81q³+108q²+48q+7 ,m is an integer.

Case-6:-

If r = 5 in (1) then

=> a = 9q+5

On cubing both sides then

=> a³ = (9q+5)³

=> a³ = (9q)³+3(9q)²(5)+3(9q)(5)²+(5)³

=> a³ = 729q³ + 15(81q²)+27q(25)+125

=> a³ = 729q³ + 1215q²+675q+125

=> a³ = 729q³ + 1215q²+675q+117+8

=> a³ = 9(81q³+135q²+75q+13)+8

=> a³ = 9m+8 ------------------(7)

Where ,m = 81q³+135q²+75q+13 ,m is an integer.

Case-7:-

If r = 6 in (1) then

=> a = 9q+6

On cubing both sides then

=> a³ = (9q+6)³

=> a³ = (9q)³+3(9q)²(6)+3(9q)(6)²+(6)³

=> a³ = 729q³ + 18(81q²)+27q(36)+216

=> a³ = 729q³ + 1458q²+972q+216

=> a³ = 9(81q³+162q²+108q+24)

=> a³ = 9m ------------------(8)

Where ,m = 81q³+162q²+108q+24 ,m is an integer.

Case-8:-

If r = 7 in (1) then

=> a = 9q+7

On cubing both sides then

=> a³ = (9q+7)³

=> a³ = (9q)³+3(9q)²(7)+3(9q)(7)²+(7)³

=> a³ = 729q³ + 21(81q²)+27q(49)+343

=> a³ = 729q³ + 1701q²+1323q+343

=> a³ = 729q³ + 1701q²+1323q+342+1

=> a³ = 9(81q³+189q²+137q+38)+1

=> a³ = 9m+1 ------------------(9)

Where ,m = 81q³+189q²+137q+38 ,m is an integer.

Case-9:-

If r = 8 in (1) then

=> a = 9q+8

On cubing both sides then

=> a³ = (9q+8)³

=> a³ = (9q)³+3(9q)²(8)+3(9q)(8)²+(8)³

=> a³ = 729q³ + 24(81q²)+27q(64)+512

=> a³ = 729q³ + 1944q²+1728q+512

=> a³ = 729q³ + 1944q²+1728q+504+8

=> a³ = 9(81q³+216q²+192q+56)+8

=> a³ = 9m+8 ------------------(10)

Where ,m = 81q³+216q²+192q+56,m is an integer.

From all above equations from (2) to (10)

We conclude that

The cube of any positive integer is in the from of 9m or 9m+1 or 9m+8

Hence, Proved.

Answer:-

The cube of any positive integer is in the from of 9m or 9m+1 or 9m+8.

Used formulae:-

Euclid's Division Algorithm:-

For any two positive integers a and b there exist two positive integers q and r satisfying a=bq+r, where 0≤r<b.

Used Identity :-

(a+b)³ = a³+3a²b+3ab²+b³

Similar questions