Math, asked by syedaparveenfatimara, 3 months ago

Use division algorithm to show that the square of any positive integer is of the form

3p or 3p + 1.​

Answers

Answered by chauhansatyam600
0

Answer:

हतव्य को एट वडाला है उन्होंने अपने घर ले गए वहां एक ही दिन तक लगातार दूसरी वनडे रैंकिंग भी अधिक मात्रा कम नहीं कर पा सकते थे बाबोसा को टू सिनेमाघरों है और मैं एक और क्या कर सकते थे क्योंकि वे भी इस कारण ही हाथों पर एक ही हाथों ने भी इस कारण ही आज हम लोग हैं जिन्हें आप भी आज से शुरू होगा और वह अपनी बात कह रहा कि इस बात में से भी इस प्रकार एक

Answered by Anonymous
2

Answer:

Let us consider a positive integer a

Divide the positive integer a by 3, and let r be the reminder and b be the quotient such that

a = 3b + r……………………………(1)

where r = 0,1,2,3…..

Case 1: Consider r = 0

Equation (1) becomes

a = 3b

On squaring both the side

a2 = (3b)2

a2 = 9b2

a2 = 3 × 3b2

a2 = 3m

Where m = 3b2

Case 2: Let r = 1

Equation (1) becomes

a = 3b + 1

Squaring on both the side we get

a2 = (3b + 1)2

a2 = (3b)2 + 1 + 2 × (3b) × 1

a2 = 9b2 + 6b + 1

a2 = 3(3b2 + 2b) + 1

a2 = 3m + 1

Where m = 3b2 + 2b

Case 3: Let r = 2

Equation (1) becomes

a = 3b + 2

Squaring on both the sides we get

a2 = (3b + 2)2

a2 = 9b2 + 4 + (2 × 3b × 2)

a2 = 9b2 + 12b + 3 + 1

a2 = 3(3b2 + 4b + 1) + 1

a2 = 3m + 1

where m = 3b2 + 4b + 1

∴ square of any positive integer is of the form 3m or 3m+1.

Hence proved.

Similar questions