use division algorithm to show that the squared
of any positive integer is the from 8p +8p+1
Answers
Answered by
0
Answer:
Let a be any positive integer and b = 8. Then, by Euclid’s lemma a = 8q + r,
0 ≤ r < 8 and so the possible remainders are 0, 1, 2, 3, 4 , 5 , 6 and 7
That is, a can be 8q or 8q + 1 or 8q + 2 or 8q + 3 or 8q + 4 or 8q + 5 or 8q+ 6 or 8q+ 7 , where q is the quotient.
If a = 8q + 1 or 8q + 3 or 8q + 5 or 8q +7 then a is an odd integer.
And,
if a = 8q or 8q + 2 or 8q + 4 or 8q + 6 then a is an even integer.
Also, an integer can either be even or odd.
∴ Any even integer is of the form 8q or 8q + 2 or 8q + 4 or 8q + 6 , where q is some integer. ( Hence proved )
Similar questions