Math, asked by khushii35, 7 months ago

Use elimination method to find all possible solutions of the following
pair of linear equations : ax+by-a+b=0 and bx-ay-a-b=0​

Answers

Answered by sai2006bethi
0

Answer:

haa use elimination method friend

Answered by rajeshjha352
0

Answer:

The solution of the equations is x=1 and y=-1.

Step-by-step explanation:

Given : Equations ax+by-a+b=0ax+by−a+b=0 and bx-ay-a-b=0bx−ay−a−b=0

To find : Solve the equation by elimination method?

Solution :

Let ax+by=a-bax+by=a−b ....(1)

and bx-ay=a+bbx−ay=a+b ....(2)

To eliminate y multiply (1) by a and (2) by b,

a^2x+aby=a^2-aba

2

x+aby=a

2

−ab ....(3)

b^2x-aby=ab+b^2b

2

x−aby=ab+b

2

......(4)

Add (3) and (4),

a^2x+aby+b^2x-aby=a^2-ab+ab+b^2a

2

x+aby+b

2

x−aby=a

2

−ab+ab+b

2

x(a^2+b^2)=a^2+b^2x(a

2

+b

2

)=a

2

+b

2

x=\frac{a^2+b^2}{a^2+b^2}x=

a

2

+b

2

a

2

+b

2

x=1x=1

In similar way,

To eliminate x multiply (1) by b and (2) by a,

abx+b^2y=ab-b^2abx+b

2

y=ab−b

2

....(5)

abx-a^2y=a^2+ababx−a

2

y=a

2

+ab ......(6)

Subtract (5) and (6),

abx+b^2y-abx+a^2y=ab-b^2-a^2-ababx+b

2

y−abx+a

2

y=ab−b

2

−a

2

−ab

(b^2+a^2)y=-(b^2+a^2)(b

2

+a

2

)y=−(b

2

+a

2

)

y=-\frac{(b^2+a^2)}{(b^2+a^2)}y=−

(b

2

+a

2

)

(b

2

+a

2

)

y=-1y=−1

Therefore, The solution of the equations

Similar questions
Math, 1 year ago