Use Euclid division algorithm to find HCF of 56 and 72 and hence express it in the form of 56x + 72y
Answers
Answered by
29
Answer with explanation:
Euclid division algorithm states that, If a and b are two integers,and when a is divided by b, giving Quotient r and remainder p,then it can be written as
⇒ a= b p + r,where, 0≤r<b
→72=56×1 +16
→56=16×3+8
→16=8×2+0
H C F (56,72)=8
We have to express, H C F (56,72) in the form of ,56 x +72 y.
⇒8=5 6 x + 72 y
⇒1=7 x + 9 y
Answered by
2
jsjdndnndnLgdvevzbnaammdndnsnsn
Step-by-step explanation:
- msmmsmzmsmnsvdvdvdndndnznTs"_":™♂°€π€π€∆€♀π℅π♀€∆€∆¥π€∆€¿∆¿€π【℅°♀°€¿∆fisfzgxfsgdxkvzfafjzgkxgkstostoskgstosogzkgxkgxgksfisgkxkgztsfizgkztskgzfstzgxkgxgks95sgdigwxigxgd9xigsigsgixogxgkvnzfsotdkgxkgfisfsjvxkgxtigtdtosdxox
Similar questions