Math, asked by saikumar0, 1 year ago

use euclid division lemma to ehow that cube of any positive integer is of the form 7m ,7m+1 or 7m+6​

Answers

Answered by BrainlyQueen01
6

Answer:

Step-by-step explanation:

Let 'a' be any positive integer and b = 7.

Using Euclid Division Lemma,

a = bq + r           [ 0 ≤ r < b ]

⇒ a = 7q + r      [ 0 ≤ r < 7 ]

Now, possible value of r :

r = 0, r = 1, r = 2, r = 3, r = 4, r = 5, r = 6

CASE I :

If we take, r = 0

⇒ a = 7q + 0

⇒ a = 7q

On cubing both sides,

⇒ a³ = (7q)³

⇒ a³ =  7 ( 49 q³ )

⇒ a³ = 7m         [49q³ = m as integer]

CASE II :

If we take, r = 1

⇒ a = 7q + 1

On cubing both sides ;

⇒ a³ = (7q + 1)³

⇒ a³ = 343q³ + 1³ + 3 * 7q * 1 ( 7q + 1 )

⇒ a³ = 343q³ + 1 + 147q² + 21q

⇒ a³ = 7 ( 49q³ + 21q² + 3q ) + 1

⇒ a³ = 9m + 1        [ Take m as some integer ]

CASE III :

If we take r = 2,

⇒ a = 7q + 2

On cubing both sides ;

⇒ a³ = (7q + 2)³

⇒ a³ = 343q³ + 2³ + 3 * 7q * 2 ( 7q + 2 )

⇒ a³ = 343q³ + 8 + 294q² + 84q

⇒ a³ = 7 ( 49q³ + 42q² + 12q ) + 8

⇒ a³ = 7m + 8    [Take m as some integer]

And so on.

Hence, the cube of any positive integer is in the form of 7m, 7m+1 or 7m+8.

__________________

Identity used ;

( a + b )³ = a³ + b³ + 3ab ( a + b )


BloomingBud: nice
BrainlyQueen01: Thanka :)
Answered by tahirmdk
0

Answer:

Let take b = 7. (/here b<a. and a , b , q and r are the positive integers)

according to Euclid division lemma:

a = bq+r. (0≥r>b)

a = 7q+r (0≥r>7)

so r values are

r -------->0,1,2,3,4,5,6

1) when r value equals to zero (r=0)

a = 7q+r

a = 7q+0

a = 7q

cube both side

a³ = 343q³

a³ = 7(49q³)

a³ = 7m. (/here m is positive integer and m = 49q³)

2) if value of r is equals to 1 (r=1)

a = 7q+r

a = 7q+1

cube both side

(a)³ = (7q+1)³

a³ = 343q³+1³+3(7q)(1)(7q+1)

a³. = 343q³+21q(7q+1) + 1

a³. = 343q³+ 147q² + 21q + 1

a³ = 7(49q³+21q²+3q)+1

a³ = 7m + 1. (/here m is positive integer and m = 49q³+21q²+3q)

3) if r value equals to 6 ( r = 6)

a = 7q+r

a = 7q+

cube both side

(a)³ = (7q+6)³

a³ = 343q³+216+3(7q)(6)(7q+6)

a³ = 343q³+126q(7q+6)+216

a³ = 343q³+882q²+756q+216

a³ = 7(49q³+127q²+108q)+216

a³ = 7m+216. (/here m is positive integer and m = 49q³+127q²+108q)

I think 7m + 6 is not a cube of any positive integer

Step-by-step explanation:

Similar questions