Use Euclid division lemma to show that cube of any positive integer is of the form 4m,4m+1,4m+3 for some integer m
Answers
By using euclids division lemma we get,
a=bq+r
r=0,1,2,3
r=0, a=bq
a³=(4q) ³
a³=64q³
a³=4(16q³)
a³=4m. {m=2q³}
r=1, a=bq+1
a³=(4q+1)³
a³=64q³+1+12q²+12q
a³=4(16q³+3q²+3q) +1
a³=4m+1. {m=16q³+3q²+3q}
r=2, a=bq+2
a³=(4q+2)³
a³=64q³+8+24q²+24q
a³=64q³+24q²+24q+4+4
a³=4(16q³+6q²+6q+1)+4
a³=4m+4. {m=16q³+6q²+6q+1}
r=3, a=bq+3
a³=(4q+3)³
a³=64q³+27+36q²+36q
a³=64q³+24+36q²+36q+3
a³=4(16q³+9q²+9q+6)+3
a³=4m+3. {m=16q³+9q²+9q+6}
Therefore, for cube of any positive integer we can write 4m, 4m+1 or 4m+3
Step-by-step explanation:
Let 'a' be any positive integer and b = 4.
Using Euclid Division Lemma,
a = bq + r [ 0 ≤ r < b ]
⇒ a = 3q + r [ 0 ≤ r < 4 ]
Now, possible value of r :
r = 0, r = 1, r = 2, r = 3
CASE 1:
If we take, r = 0
⇒ a = 4q + 0
⇒ a = 4q
On cubing both sides,
⇒ a³ = (4q)³
⇒ a³ = 4 (16q³)
⇒ a³ = 9m [16q³ = m as integer]
CASE 2:
If we take, r = 1
⇒ a = 4q + 1
On cubing both sides ;
⇒ a³ = (4q + 1)³
⇒ a³ = 64q³ + 1³ + 3 * 4q * 1 ( 4q + 1 )
⇒ a³ = 64q³ + 1 + 48q² + 12q
⇒ a³ = 4 ( 16q³ + 12q² + 3q ) + 1
⇒ a³ = 4m + 1 [ Take m as some integer ]
CASE 3:
If we take r = 2,
⇒ a = 4q + 2
On cubing both sides ;
⇒ a³ = (4q + 2)³
⇒ a³ = 64q³ + 2³ + 3 * 4q * 2 ( 4q + 2 )
⇒ a³ = 64q³ + 8 + 96q² + 48q
⇒ a³ = 4 ( 16q³ + 2 + 24q² + 12q )
⇒ a³ = 4m [Take m as some integer]
CASE 4 :
If we take, r = 3
⇒ a = 4q + 3
On cubing both the sides;
⇒ a³ = (4q + 3)³
⇒ a³ = 64q³ + 27 + 3 * 4q * 3 (4q + 3)
⇒ a³ = 64q³ + 24 + 3 + 144q² + 108q
⇒ a³ = 4 (16q³ + 36q² + 27q + 6) + 3
⇒ a³ = 4m + 3 [Take m as some integer]
Hence, the cube of any positive integer is in the form of 4m, 4m+1 or 4m+3.
__________________
Identity used ;
∵ ( a + b )³ = a³ + b³ + 3ab ( a + b ) .
Hence, it is solved.