Use Euclid division lemma to show that square of any positive integer cannot be of the from 5m+2 or 5m+3 for some integer m. (plz provide the whole workout)
Answers
Then by Euclid's division lemma
that is
=> a = bq+r
where, b= 5
and r =0,1,2,3,4
a = 5q
a = 5q+1
a = 5q+2
a = 5q+3
a = 5q+4
Now taking all as a case:-
⭐Case -1
a = 5q
a² = (5q)²
a² = 25q²
a² = 5m { where m = 5q²}
⭐Case -2
a = 5q+1
a² = (5q+1)²
a² = 25q²+1+10q
[using identity (a+b)² = a² + b² + 2ab]
a² = 5m(where m= 5q²+2q)+1
a² = 5m+1
⭐Case -3
a= 5q+2
a² = (5q+2)²
a² = 25q² +4+20q
a²= 5m ( where m = 5q²+4q)+4
a² = 5m+4
⭐Case -4
a = 5q+3
a² = (5q+3)²
a² = 25q²+9+30q
a²=5m ( where m = 5q²+6q)+9
a²=5m+9
⭐Case -5
a =5q+4
a²=(5q+4)²
a²= 25q²+16+40q
a² = 5m ( where m= 5q²+8q)+16
a²= 5m+16
Since, by solving all we didn't get
a²=5m+2 Or a²=5m+3
So,proved.
Step-by-step explanation:
Question : -
→ Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m + 2 or 5m + 3 for some integer m.
▶ Step-by-step explanation : -
Let ‘a’ be the any positive integer .
And, b = 5 .
→ Using Euclid's division lemma :-
==> a = bq + r ; 0 ≤ r < b .
==> 0 ≤ r < 5 .
•°• Possible values of r = 0, 1, 2, 3, 4 .
→ Taking r = 0 .
Then, a = bq + r .
==> a = 5q + 0 .
==> a = ( 5q )² .
==> a = 5( 5q² ) .
•°• a = 5m . [ Where m = 5q² ] .
→ Taking r = 1 .
==> a = 5q + 1 .
==> a = ( 5q + 1 )² .
==> a = 25q² + 10q + 1 .
==> a = 5( 5q² + 2q ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 2q ] .
→ Taking r = 2 .
==> a = 5q + 2 .
==> a = ( 5q + 2 )² .
==> a = 25q² + 20q + 4 .
==> a = 5( 5q² + 4q ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 4q ] .
→ Taking r = 3 .
==> a = 5q + 3 .
==> a = ( 5q + 3 )² .
==> a = 25q² + 30q + 9 .
==> a = 25q² + 30q + 5 + 4 .
==> a = 5( 5q² + 6q + 1 ) + 4 .
•°• a = 5m + 4 . [ Where m = 5q² + 6q + 1 ] .
→ Taking r = 4 .
==> a = 5q + 4 .
==> a = ( 5q + 4 )² .
==> a = 25q² + 40q + 16 .
==> a = 25q² + 40q + 15 + 1 .
==> a = 5( 5q² + 8q + 3 ) + 1 .
•°• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] .
→ Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3 .
✔✔ Hence, it is proved ✅✅.
_'fff