use euclid division lemma to show that the cube of any positive integer of the form 9m or 9m+1 or 9m+2
Answers
Solution-----> Let a be any positive integer and
a = 3q + r , where 0 ≤ r ≤ 3
So r can take values 0 , 1 , 2
r = 0 , 1 , 2
Now putting r = 0 , we get ,
a = 3q + 0
=> a = 3q
taking cube of both sides ,
=> a³ = ( 3q )³
=> a³ = 27q³
=> a³ = 9 ( 3q³ )
Let m = 3q³ , putting it we get,
=> a³ = 9 m
Now putting r = 1 , we get ,
a = 3q + 1
Taking cube of both sides
=> a³ = ( 3q + 1 )³
=> a³ = ( 3q )³ + ( 1 )³ + 3 ( 3q ) ( 1 ) ( 3q + 1 )
=> a³ = 27q³ + 1 + 9q ( 3q + 1 )
=> a³ = 27q³ + 1 + 27q² + 9q
=> a³ = 27q³ + 27q² + 9q + 1
=> a³ = 9 ( 3q³ + 3q² + q ) + 1
=> a³ = 9 m + 1 , where m = ( 3q³ + 3q² + q )
Now , putting r = 2 , we get ,
a = 3q + 2
Taking cube both sides we get ,
=> a³ = ( 3q + 2 )³
=> a³ = ( 3q )³ + ( 2 )³ + 3 ( 3q ) ( 2 ) ( 3q + 2 )
=> a³ = 27q³ + 8 + 18q ( 3q + 2 )
=> a³ = 27q³ + 8 + 54q² + 36q
=> a³ = 27q³ + 54q² + 36q + 8
=> a³ = 9 ( 3q³ + 6q² + 4q ) + 8
=> a³ = 9m + 8 , where m = ( 3q³ + 6q² + 4q )
So cube of any positive integer is of the form 9m or ( 9m + 1 ) or ( 9m + 8 )