use Euclid division lemma to show that the cube of any positive integers is of the from 9m9m+8
Answers
Answer:
let b=3
a=3q+r. (r=0,1,2)
a=3q+0
a=3q
a^3=(3q) ^3
a^3=27q^3
now take 9 common from RHS
a^3=9(3q^3)
{3q ^3} =m
a^3= 9m
〰️〰️〰️〰️
a=3q+1
a^3=(3q+1)^3
a^3=(3q)^3+1^3+3(3q)^2(1)+3(3q)(1)^2
a^3=(27q^3+3*9q+9q*2)+1
take 9 common
a^3=9(3q^3+3q+2q)+1
a^3=9m+1
similarly take a=3m+2
take 2^3 in side
let, A be any positive integer .
Then, B = 3
And q and R be some positive integer.
. ° . By using Euclids Division Lemma,we get
a = 3q + r ( where r = 0 < r < 3)
. ° . The possible Values of R are 0, 1 ,2
when , r = 0
↦a = 3q + r
↦️a = 3q + 0
↦️A = 3q
Now , cubing on both sides
⇒️ a³ = (3q )³
⇒️a³ = 27q³
⇒️a³ = 9 × 3q ³
a³ = 9m. { where, 3q³ = m is some integer }
when , r = 1
↦a = 3q +1
Now, cubing on both sides -
⇒️a³ = ( 3q + 1 ) ³
️⇒a³ = ( 3q ) ³ + 3 ×( 3q)² × 1 + 3× 3q (1 )² + (1)³
⇒️a ³ = 27 q³ + 27q² + 9q + 1
⇒️a³ = 9( 3q³ + 3q² + q ) + 1
a³ = 9m + 1
{where, 3q³ + 3q² +q = m is some integer}
when r = 2
↦️a = 3q +2
Now, cubing on both sides, we get
⇒️a ³ = ( 3q + 2) ³
⇒️a³ = ( 3q)³ + 3× (3q ) ² × 2 + 3× 3q × (2)²+(2)³
⇒a ³ = 27q³ + 54q² + 36q + 8
⇒a³ = 9 ( 3q³ + 6q² + 4q) + 8
️ a³ = 9m + 8
{where, 3q³ +6q² +4q = m is some integer}
Therefore, The cube of any positive integer is of the form of 9m , 9m +1 , 9m + 8