use Euclid division Lemma to show that the cube of any positive integer in the form of 9 M or 9 M + 1 or 9M + 8
Answers
Answered by
8
Let the positive integer be a which when devided by 3 gives q as quotient and r as remainder.
So, according to Euclid division lemma
a=bq+r
a=3q+r
where r=0,1,2
then,
a=3q
or
a=3q+1
or
a=3q+2
⭐case 1:--
a=3q
a³=(3q)³
=27q³
=9m{where m=3q³}
⭐Case 2.........
(used identity (a+b)³=a³+3a²b+3ab²+b³)
a=3q+1
a³=(3q+1)³
=27q³+1+27q²+9q
=9m{where m=3q³+3q²+q}+1
=9m+1
⭐Case 3
a=3q+2
a³=(3q+2)³
=27q³+27q²+36q+8
=9m{where m=3q³+3q²+4q}+8
=9m+8
Hence proved...
@Altaf
So, according to Euclid division lemma
a=bq+r
a=3q+r
where r=0,1,2
then,
a=3q
or
a=3q+1
or
a=3q+2
⭐case 1:--
a=3q
a³=(3q)³
=27q³
=9m{where m=3q³}
⭐Case 2.........
(used identity (a+b)³=a³+3a²b+3ab²+b³)
a=3q+1
a³=(3q+1)³
=27q³+1+27q²+9q
=9m{where m=3q³+3q²+q}+1
=9m+1
⭐Case 3
a=3q+2
a³=(3q+2)³
=27q³+27q²+36q+8
=9m{where m=3q³+3q²+4q}+8
=9m+8
Hence proved...
@Altaf
Similar questions