use Euclid division lemma to show that the cube of any positive integer is of the form of a 9m, 9m+1,9m+8.
Answers
Answered by
0
Hope this will help u my frnd
if you like this plz mark as brainlist ans
Attachments:
Answered by
0
Let a be any positive integer.
Therefore, by Euclid's Division lemma
a=bq+r
Taking b as 3.
a=3q+r, where 0<_r<_3
Therefore
r=0,1&2
CASE 1:
r=0
a=3q+0
a=3q
a^3=(3q) ^3
a^3=27q^3
a^3=9(3q^3)
a^3=9m. {m=3q^3}
CASE 2:
r=1
a=3q+1
a^3=(3q+1)^3
a^3=27q^3+27q^2+9q+1
a^3=9(3q^3+3q^2+q)+1
a^3=9m+1. (m=3q^3+3q^2+q)
CASE 3:
r=2
a=3q+2
a^3=(3q+2)^3
a^3=27q^3+54q^2+36q+8
a^3=9(3q^3+6q^2+4q)+8
a^3=9m+8. (m=3q^3+6q^2+4q)
Hence proved
Similar questions