Use Euclid division lemma to show that the square of any positive integer is either of the form 3m or 3m +1 for some integer m
Sahi uttar dedo
plz
Answers
Answered by
2
Answer:
Let a be the positive integer and b=3.
We know a=bq+r, 0≤r<b
Now, a=3q+r, 0≤r<3
The possibilities of remainder is 0,1, or 2.
Case 1 : When a=3q
a²=(3q)² =9q² =3q×3q=3m where m=3q²
Case 2 : When a=3q+1
a²=(3q+1)²=(3q)²+(2×3q×1)+(1)²=3q(3q+2)+1=3m+1 where m=q(3q+2)
Case 3: When a=3q+2
a²=(3q+2)²=(3q)²+(2×3q×2)+(2) ²=9q² +12q+4=9q²+12q+3+1=3(3q²+4q+1)+1=3m+1
where m=3q²+4q+1
Hence, from all the above cases, it is clear that square of any positive integer is of the form 3m or 3m+1.
Similar questions