Math, asked by bts001, 1 year ago

Use Euclid division lemma to show that the square of any positive integer is either of the form 3m or 3m+1 for some integer m.​

Answers

Answered by aspiring
3
Let any two positive integers be a & b
AS PER STATEMENT...
LET b=3
Now according to euclid division lemma -->
a=bq+r(where q is quotient and r is remainder)
a=3q+r - eq 1
As 0<_r<3( <_ is for equal or greater than)
r can be 0,1,2
Put r=0 in eq 1
a=3q+0
a=3q
square both sides
a^2=(3q)^2
a^2=9q^2
a^2=3(3q^2)
a^2=3m(where m=3q^2)
Now take r as 1
a=3q+1
square both sides
a^2=(3q+1)^2
a^2=9q^2+1+6q
a^2=3(3q^2+2q)+1
a^2=3m+1( where 3q^2+2q =m)


Hope it might help..♡
Answered by Anonymous
0

Step-by-step explanation:

Question : -

→ Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m + 2 or 5m + 3 for some integer m.

 \huge \pink{ \mid{ \underline{ \overline{ \tt Answer: -}} \mid}}

▶ Step-by-step explanation : -

Let ‘a’ be the any positive integer .

And, b = 5 .

→ Using Euclid's division lemma :-

==> a = bq + r ; 0 ≤ r < b .

==> 0 ≤ r < 5 .

•°• Possible values of r = 0, 1, 2, 3, 4 .

→ Taking r = 0 .

Then, a = bq + r .

==> a = 5q + 0 .

==> a = ( 5q )² .

==> a = 5( 5q² ) .

•°• a = 5m . [ Where m = 5q² ] .

→ Taking r = 1 .

==> a = 5q + 1 .

==> a = ( 5q + 1 )² .

==> a = 25q² + 10q + 1 .

==> a = 5( 5q² + 2q ) + 1 .

•°• a = 5m + 1 . [ Where m = 5q² + 2q ] .

→ Taking r = 2 .

==> a = 5q + 2 .

==> a = ( 5q + 2 )² .

==> a = 25q² + 20q + 4 .

==> a = 5( 5q² + 4q ) + 4 .

•°• a = 5m + 4 . [ Where m = 5q² + 4q ] .

→ Taking r = 3 .

==> a = 5q + 3 .

==> a = ( 5q + 3 )² .

==> a = 25q² + 30q + 9 .

==> a = 25q² + 30q + 5 + 4 .

==> a = 5( 5q² + 6q + 1 ) + 4 .

•°• a = 5m + 4 . [ Where m = 5q² + 6q + 1 ] .

→ Taking r = 4 .

==> a = 5q + 4 .

==> a = ( 5q + 4 )² .

==> a = 25q² + 40q + 16 .

==> a = 25q² + 40q + 15 + 1 .

==> a = 5( 5q² + 8q + 3 ) + 1 .

•°• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] .

→ Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3 .

✔✔ Hence, it is proved ✅✅.

 \huge \orange{ \boxed{ \boxed{ \mathscr{THANKS}}}}

Similar questions