Math, asked by nightwingsantosh, 1 year ago

Use Euclid divison lemma​

Attachments:

Answers

Answered by shadowsabers03
11

Question:

Use Euclid's division lemma to show that the square of any positive integer is of the form 5n or 5n + 1 or 5n + 4, where n is a whole number.

Proof:

Euclid's division lemma states that a = bq + r, for any positive integer a and q and where 0 ≤ r ≤ b.

Let b = 5. So that a = 5q + r.

As 0 ≤ r ≤ 5, r can be either 0, 1, 2, 3, 4 and 5.

(1) Let r = 0.

⇒ a = 5q + 0

⇒ a = 5q

⇒ a² = (5q)²

⇒ a² = 25q²

⇒ a² = 5 × 5q²

⇒ a² = 5n

∴ a² is of the form 5n, where n = 5q²

(2) Let r = 1.

⇒ a = 5q + 1

⇒ a² = (5q + 1)²

⇒ a² = 25q² + 10q + 1

⇒ a² = 5(5q² + 2q) + 1

⇒ a² = 5n + 1

∴ a² is of the form 5n + 1, where n = 5q² + 2q.

(3) Let r = 2.

⇒ a = 5q + 2

⇒ a² = (5q + 2)²

⇒ a² = 25q² + 20q + 4

⇒ a² = 5(5q² + 4q) + 4

⇒ a² = 5n + 4

∴ a² is of the form 5n + 4, where n = 5q² + 4q.

(4) Let r = 3.

⇒ a = 5q + 3

⇒ a² = (5q + 3)²

⇒ a² = 25q² + 30q + 9

⇒ a² = 25q² + 30q + 5 + 4

⇒ a² = 5(5q² + 6q + 1) + 4

⇒ a² = 5n + 4

∴ a² is of the form 5n + 4, where n = 5q² + 6q + 1.

(5) Let r = 4.

⇒ a = 5q + 4.

⇒ a² = (5q + 4)²

⇒ a² = 25q² + 40q + 16

⇒ a² = 25q² + 40q + 15 + 1

⇒ a² = 5(5q² + 8q + 3) + 1

⇒ a² = 5n + 1

∴ a² is of the form 5n + 1, where n = 5q² + 8q + 3.

(6) Let r = 5.

⇒ a = 5q + 5

⇒ a = 5(q + 1)

⇒ a² = (5(q + 1))²

⇒ a² = 25(q + 1)²

⇒ a² = 5(5(q + 1)²)

⇒ a² = 5n

OR

⇒ a = 5q + 5

⇒ a² = (5q + 5)²

⇒ a² = 25q² + 50q + 25

⇒ a² = 5(5q² + 10q + 5)

⇒ a² = 5n

∴ a² is of the form 5n, where n = 5(q + 1)² = 5q² + 10q + 5.

Thus proved that the square of any positive integer is of the form 5n or 5n + 1 or 5n + 4.

Similar questions