Use Euclid’s algorithm, find the HCF of
(i) 8624 and 21658.
(ii) 4052 and 12576.
Answers
Answered by
20
Euclid division lemma:-
a = bq + r
0 ≤ r < b
a > b
(i)8624 and 21658
21658 = 8624(2) + 4410
8624 =4410(1) + 4214
4410 = 4214(1) + 196
4214 = 196(21) + 98
196 = 98(2) + 0
HCF of 8624 and 21658 is 98,
(ii)4052 and 12576
12576 = 4052(3) + 420
4052 = 420(9) + 272
420 = 272(1) + 148
272 = 148(1) + 124
148 = 124(1) + 24
124 = 24(5) + 4
24 = 4(6) + 0
HCF of 4052 and 12576 is 4.
Hope it helps...
a = bq + r
0 ≤ r < b
a > b
(i)8624 and 21658
21658 = 8624(2) + 4410
8624 =4410(1) + 4214
4410 = 4214(1) + 196
4214 = 196(21) + 98
196 = 98(2) + 0
HCF of 8624 and 21658 is 98,
(ii)4052 and 12576
12576 = 4052(3) + 420
4052 = 420(9) + 272
420 = 272(1) + 148
272 = 148(1) + 124
148 = 124(1) + 24
124 = 24(5) + 4
24 = 4(6) + 0
HCF of 4052 and 12576 is 4.
Hope it helps...
thakursiddharth:
Thank u so much
Answered by
1
Answer:
98 is HCF
Step-by-step explanation:
THE HCF OF 8634 AND 21658 IS 98
PLEASE MAKE ME BRAINLIST
Hope it helps
Similar questions