use euclid's algorithm to find the HCF of 1190 and 1445. Express the HCF in the form 1190m+1445n.
Answers
Answer:
m = - 6 and n = 5
Step-by-step explanation:
Solution :-
1445 = 1190*1 + 255
1190 = 255*4 + 170
255 = 170*1 + 85
170 = 85*2 + 0
So, now the remainder is 0, then HCF is 85
Now,
85 = 255 - 170
(1445 - 1190) - (1190 - 255*4)
⇒ 1445 - 1190 - 1190 + 255*4
⇒ 1445 - 1190*2 + (1445 - 1190)*4
⇒ 1445 - 1190*2 + 1445*4 - 1190*4
⇒ 1445*5 - 1190*6
⇒ 1190*(- 6) + 1445*5
1190m + 1445n , Solution :-
1445 = 1190*1 + 255
1190 = 255*4 + 170
255 = 170*1 + 85
170 = 85*2 + 0
So, now the remainder is 0, then HCF is 85
Now,
85 = 255 - 170
(1445 - 1190) - (1190 - 255*4)
⇒ 1445 - 1190 - 1190 + 255*4
⇒ 1445 - 1190*2 + (1445 - 1190)*4
⇒ 1445 - 1190*2 + 1445*4 - 1190*4
⇒ 1445*5 - 1190*6
⇒ 1190*(- 6) + 1445*5
1190m + 1445n , where m = - 6 and n = 5
Answer.
I think it's help you please mark me brain list