Use euclid s algorithm,to find the hcf of 65 and 117 and then express it in the form of 65x+117y , where x and y are integers
Answers
In order to find H.C.F of 65 and 117 we have to do following steps :-
⇒ 117 = 65 × 1 + 52 __(1)
⇒ 65 = 52 × 1 + 13 __(2)
⇒ 52 = 13 × 4 + 0
∴ H.C.F of 65 and 117 = 13
From eq (2) we get,
⇒ 65 = 52 × 1 + 13
⇒ 65 - (52 × 1) = 13
⇒ 65 - 52 = 13
From eq(1) we get,
⇒ 65 - (117 - 65) = 13
⇒ 65 + 117( - 1 ) + 65 = 13
⇒ 65(2) + 117(-1) = 13
Hence, H.C.F is in form of 65x + 117y where x = 2 and y = - 1.
Answer:
x = 2 and y = -1
Step-by-step explanation:
To find the hcf of 65 and 117, we will use Euclid's Division
a = bq +r
117 = 65 × 1 + 52 ----> [ 2 ]
65 = 52 x 1 + 13 -----> [1]
52 = 13 x 4 + 0
HCF of 65 and 117 = 13 = 13
13 = 65m + 117n
From equation [ 1] we get ,
13 = 65 - 52 x 1
From equation [2] we get ,
52 = 117 - 65 x 1
Than backwords ,
13 = 65 + 52x(-1)
13 = 65 + [117 + 65x(-1)]x(-1)
13 = 65x(2) + 117x(-1).
x = 2 and y = -1
Hence, H.C.F of 65x + 117y, where x = 2 and y = - 1.