Math, asked by raheemkhaja786, 2 months ago

use euclid's division algonthem show that cube of any positive integer is of the form 4m,4m+1 or 4m+3 ​

Answers

Answered by 12thpáìn
189

Step by step explanation

Let

n= bq+r (Euclid's division algorithm)

b=4

r=0,1,2,3

Case 1 when r=0

{\sf     →n=4q+0      }

{\sf     →n³=(4q)³      }

{\sf     →n³=64q³      }

{\sf       →n³=4(16q³)   }

{\sf     →n³=4m  ~~~~~~~~~ (16q³=m)   }\\\\

Case 2 when r=1

{\sf      →n=4q+1     }

{\sf     →n³=(4q+1)³      }

{\sf     →n³=(4q)³+(1)³+3×(4q)²×1+ 3×1²×4q      }

{\sf       →n³=64q³+1+3×16q²+ 12q    }

{\sf     →n³=64q³+1+48q²+ 12q      }

{\sf      →n³=4(16q³+12q²+3q)+1     }

{\sf     →n=4m+1~~~~~~~~~~~~~(16q³+12q²+3q=m)      }\\\\

Case 3 when r=2

{\sf    →n=4q+2       }

{\sf     →n³=(4q+2)³      }

{\sf      →n³=(4q)³+(2)³+3×(4q)²×2+ 3×2²×4q     }

{\sf      →n³=64q³+8+6×16q²+ 48q     }

{\sf     →n³=64q³+8+86q²+ 47q      }

{\sf      →n³=4(16q³+24q²+12q+2)     }

{\sf     →n=4m~~~~~~~~~~~~~(16q³+24q²+12q+2=m)      }\\\\

Case 4 When r=3

{\sf      →n=4q+2     }

{\sf        →n³=(4q+3)³   }

{\sf       →n³=(4q)³+(3)³+3×(4q)²×3+ 3×3²×4q    }

{\sf     →n³=64q³+27+9×16q²+ 12×9q      }

{\sf    →n³=64q³+27+144q²+ 108q       }

{\sf    →n³=4(16q³+8 +36q²+27q)       }

{\sf  →   n=4m~~~~~~~~~~  (16q³+8 +36q²+27q=m)      }\\\\

Hence, The cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.

Similar questions