Math, asked by Agnel25, 1 year ago

Use Euclid's Division Algorithm to find the Highest Common Factor (HCF) of
(i) 340 and 412 ​

Answers

Answered by MaheswariS
6

Answer:

Highest common factor is 4

Step-by-step explanation:

...........1

_________

340| 412

......| 340

......|----------

......|.....72

...........4

_________

..72| 340

......| 288

......|----------

......|...52

...........1

_________

..52| 72

......| 52

......|----------

......|...20

...........2

_________

..20| 52

......| 40

......|----------

......|...12

...........1

_________

..12| 20

......| 12

......|----------

......|...8

...........1

_________

....8| 12

......| ..8

......|----------

......|...4

...........2

_________

....4| 8

......| 8

......|----------

......|..0

∴ Highest common factor is 4

Answered by StarGazer001
17

 \huge \mathfrak{Answer}

 \mathfrak{340 \: and \: 412}

 \mathsf{ELD =  > a = bq + r}

 \mathfrak{412 = 340 \times 1 + 72}

 \mathfrak{340= 72\times 4+ 52}

 \mathfrak{72= 52\times 1+ 20}

 \mathfrak{52= 20\times 2+ 12}

 \mathfrak{20= 12\times 1+ 8}

 \mathfrak{12= 8\times 1+ 4}

 \mathfrak{8= 4\times 2+ 0}

Therefore, HCF of the given numbers = 4.

Similar questions