Math, asked by Chinkoo4806, 11 months ago

Use Euclid's division lemma algorithm to find the HCF of 4052 and 12576

Answers

Answered by shantiramdas8134
1

Answer:

yes

Step-by-step explanation:

Step 1: Since12576>405212576>4052 apply the division lemma to 12576 and 4052, to get

12576=4052×3+42012576=4052×3+420

Step 2: Since the remainder 420420and new divisor is 40524052 apply the division lemma to 4052 and 420, to get

4052=420×9+2724052=420×9+272

Step 3: Consider the new divisor 420420 and the new remainder 272272, and apply the division lemma to get

420=272×1+148420=272×1+148

Consider the new divisor272272 and the new remainder 148148, and apply the division lemma to get

272=148×1+124272=148×1+124

Consider the new divisor 148148 and the new remainder124124, and apply the division lemma to get

148=124×1+24148=124×1+24

Consider the new divisor 124124 and the new remainder2424, and apply the division lemma to get

124=24×5+4124=24×5+4

Consider the new divisor 2424 and the new remainder44, and apply the division lemma to get

24=4×6+024=4×6+0

The remainder has now become zero, so procedure stops. Since the divisor at this stage is 44, the HCF of 12576 and 4052 is 44.

Similar questions