use Euclid's division lemma and show that any positive even integer is form of 6q or 6q+2 or 6q+4 where q is same integer..
Answers
Answered by
0
Answer:
Euclid division lemma :--> a = bq +r .
where r=> 0 or < b .
so , r is 4 .
r=0.
a=bq+r.
a=6q+0.
a=6q . even ...................i
r=1.
a=bq+r.
a= 6q+1.
r=2.
a=bq+r.
a=6q+2.
a= 2(3q+1)=> even...................ii
r=3.
a=bq+r.
a= 6q+3.
a=3(2q+1).=> odd ( because of odd number 3).
r=4.
a=bq+r.
a=6q+4.
a= 2(3q+2).=> even. ......................iii
SO, BY THE EQUATION i , ii , iii WE GET ALL POSITIVE INTEGER , IN THE FORM OF 6q FOR SOME INTEGER q .
HOPES ITS HELP U MARK IT AS A BRAINLIST ANSWER . FOLLOW ME . RATE THIS ANSWER .
Similar questions