Math, asked by NRSohith, 11 months ago

use euclid's division Lemma show that the square of any positive integer is either the form of 3 and 3 M + 1 for some integer m

Answers

Answered by alanthomas4746
4

Let a be any +ve integer b=3 then by euclids division lemma a=bq+r:0lessthan or equal to r less than b therfore the possible remainders are 0,1,2

a=(3q)^2=9q^2=3(3q^2)=3m (where m is some +ve integer)

a=(3q+1)^2=(3q)^2+2*3q*1+(1)^2

9q^2+6q+1=3(3q^2+2q)+1=3m+1 (where m is some +ve integer)

a=(3q+2)^2=(3q)^2+2*3q*2+(2)^2

=9q^2+12q+4=3(3q^2+4q+1)+1

=3m+1 (where m is some +ve integer)

Therfore the square of any +ve integer is of the form 3m or 3m+1

Hence proved

Answered by Anonymous
3

Step-by-step explanation:

Question : -

→ Use Euclid's Division lemma to show that the Square of any positive integer cannot be of form 5m + 2 or 5m + 3 for some integer m.

 \huge \pink{ \mid{ \underline{ \overline{ \tt Answer: -}} \mid}}

▶ Step-by-step explanation : -

Let ‘a’ be the any positive integer .

And, b = 5 .

→ Using Euclid's division lemma :-

==> a = bq + r ; 0 ≤ r < b .

==> 0 ≤ r < 5 .

•°• Possible values of r = 0, 1, 2, 3, 4 .

→ Taking r = 0 .

Then, a = bq + r .

==> a = 5q + 0 .

==> a = ( 5q )² .

==> a = 5( 5q² ) .

•°• a = 5m . [ Where m = 5q² ] .

→ Taking r = 1 .

==> a = 5q + 1 .

==> a = ( 5q + 1 )² .

==> a = 25q² + 10q + 1 .

==> a = 5( 5q² + 2q ) + 1 .

•°• a = 5m + 1 . [ Where m = 5q² + 2q ] .

→ Taking r = 2 .

==> a = 5q + 2 .

==> a = ( 5q + 2 )² .

==> a = 25q² + 20q + 4 .

==> a = 5( 5q² + 4q ) + 4 .

•°• a = 5m + 4 . [ Where m = 5q² + 4q ] .

→ Taking r = 3 .

==> a = 5q + 3 .

==> a = ( 5q + 3 )² .

==> a = 25q² + 30q + 9 .

==> a = 25q² + 30q + 5 + 4 .

==> a = 5( 5q² + 6q + 1 ) + 4 .

•°• a = 5m + 4 . [ Where m = 5q² + 6q + 1 ] .

→ Taking r = 4 .

==> a = 5q + 4 .

==> a = ( 5q + 4 )² .

==> a = 25q² + 40q + 16 .

==> a = 25q² + 40q + 15 + 1 .

==> a = 5( 5q² + 8q + 3 ) + 1 .

•°• a = 5m + 1 . [ Where m = 5q² + 8q + 3 ] .

→ Therefore, square of any positive integer in cannot be of the form 5m + 2 or 5m + 3 .

✔✔ Hence, it is proved

Similar questions