Use Euclid's division lemma, to show that the cube of any positive integer is of the form 3p or 3p +1 or 3p +2 for any integer 'p'.
Answers
Answered by
207
༒ Qυєѕтiσи ༒
╔════════◄••❀••►════════╗
Use Euclid's division lemma, to show that the cube of any positive integer is of the form 3p or 3p +1 or 3p +2 for any integer 'p'.
╚════════◄••❀••►════════╝
★彡 Sσℓυтiσи 彡★
◆ ▬▬▬▬▬▬▬ ✪ ▬▬▬▬▬▬▬◆
Let 'a' be positive integer
a = bq + r, 0 < r < b
b = 3 so r = 0, 1, 2
Then 'a' can be of the forms
3q + 0, 3q + 1, 3q + 2
Case ( 1 ) :-
When a = 3q
a³ = (3q)³ = 3 (9q³)
= 3p where p = 9q³
Case ( 2 ) :-
When a = 3q +1
a³ = (3q + 1)³
a³ = (3q)³ + 3 (3q) (1) (3q+1) + (1)³
a³ = 3 [ 9q³ + 3q (3q + 1) ] + 1
a³ = 3p + 1
Where p = 9q³ + 3q (3q + 1)
Case ( 3 ) :-
When a = 3q + 2
a³ = (3q + 2)³
a³ = (3q)³ + 3(3q) (2) (3q + 2) + (2)³
a³ = 3 [ 9q³ + 6q (3q + 2) ] + 2
a³ = 3p + 2
Where p = 9q³ + 6q(3q + 2)
So the cube of any positive integer is of the form 3p or 3p + 1 or 3p + 2 for any integer 'p'.
◆ ▬▬▬▬▬▬▬ ✪ ▬▬▬▬▬▬▬◆
Similar questions