use Euclid's division lemma to show that the cube of any positive integer is of the form 9m,9m+1 or 9m+8
Answers
Answered by
10
Step-by-step explanation:
Let a and b be two positive integers and a greater than b.
a=(b× q)+r
0≤r∠b
Let b=3
a= 3q+r where 0≤r∠3
Case(i):a=3q
a³=(3q)³=23q³=9(3q³)=9m
Case(ii):a=3q+1
a³=(3q+1)³
use formula,
[(a+b)³=a³+b³+3a²b+3ad²]
⇒27q³+1+27q²+9q=27q³+27q²+9q+1
⇒9(3q³+3q²+1)+1
⇒9m+1
Where m=3q³+3q²+q
Case(iii):a=3q+2
a³=(3a+2)³=27q³+8+54a²+26q
⇒27q³-54q²+36q+8=9(3q³+3q²+4q)+8
9m+8, where m=3q³+6q²+4q
∵Cube of any positive integer is either of the form 9m,9m+1 or 9m+8 for some integer m.
Answered by
0
Answer:
It is the correct answer.
Step-by-step explanation:
Hope this attachment helps you.
Attachments:
Similar questions