Math, asked by IMPERIALV, 2 months ago

Use Euclid’s Division Lemma to show that the cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.(can we do this sum like shown in the picture)​

Attachments:

Answers

Answered by 12thpáìn
201

\underline{\green{\sf{ Question}}}

Use Euclid’s Division Lemma to show that the cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.

\\\\\underline{\green{\sf{Step\ by\ step\ explanation}}}\\\\

Given

  • Positive integer is either of the form 9m, 9m + 1 or 9m + 8.

Prove That

  • Cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.

\underline{\green{\sf{Solution}}}

\\\\\text{n=bq+r ~~~~~~~~~~Euclid’s Division Lemma}\\\\

Let b= 3

r= 0,1,2

Case I when r= 0

\\

→n= 3q+0

→n³= (3q)³

→n³= 27q³

→n³= 9(3q³)

→\text{n³= 9m~~~~~~~~(3q³=m)}

\\\\

Case II when r= 1

\\

→n= (3q+1)

→n³= (3q+1)³

→n³= 27q³+1³+27q²+9q

→n³= 9(3q³+3q²+q)+1

→\text{n³= 9m+1~~~~~~~(3q³+3q²+q=m)}

\\\\

Case III when r=2

\\

→n= (3q+2)

→n³= (3q+2)³

→n³=27q³+54q²+36q+8

→n³= 9(3q³+6q²+4q)+8

→\text{n³= 9m+1~~~~~~~(3q³+6q²+4q=m)}

\\\\

  • Hence the Cube of positive integer is either of the form 9m, 9m + 1 or 9m + 8.

Similar questions