Use Euclid’s Division Lemma to show that the cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.(can we do this sum like shown in the picture)
Attachments:
Answers
Answered by
201
Use Euclid’s Division Lemma to show that the cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.
Given
- Positive integer is either of the form 9m, 9m + 1 or 9m + 8.
Prove That
- Cube of any positive integer is either of the form 9m, 9m + 1 or 9m + 8.
Let b= 3
r= 0,1,2
Case I when r= 0
→n= 3q+0
→n³= (3q)³
→n³= 27q³
→n³= 9(3q³)
Case II when r= 1
→n= (3q+1)
→n³= (3q+1)³
→n³= 27q³+1³+27q²+9q
→n³= 9(3q³+3q²+q)+1
Case III when r=2
→n= (3q+2)
→n³= (3q+2)³
→n³=27q³+54q²+36q+8
→n³= 9(3q³+6q²+4q)+8
- Hence the Cube of positive integer is either of the form 9m, 9m + 1 or 9m + 8.
Similar questions