use euclid's division lemma to show that the cube of any positive integer is of the form 9m,9m+1 or 9m+8
Anonymous:
Heya! I love u!
Answers
Answered by
13
euclid's lemma states that a=bq +r
let 'a' be any positive integer, 'b' =3 and quotient ='q'.
r=0,1,2
when r=0, a=3q +0 =3q
a3=[3q]3= 27q3 = 9[3q3] = 9m where m=[3q3]
when r=1, a=3q+1
a3 = [3q+1]3
= [3q]3 +[1]3 +3[3q][1]{3q+1}
= 27q3 +27q2 + 9q + 1
=9{3q3 + 3q2 + q} + 1 =9m+1 where 'm' =3q3 + 3q2 + q
when r=2, a= 3q + 2
a3=[3q+2]3
=27q3 + 54q2 + 36q + 8
=9{3q3+ 6q2+4q} +8 =9m +8 hwre 'm' = 3q3+6q2+4q
hence proved
let 'a' be any positive integer, 'b' =3 and quotient ='q'.
r=0,1,2
when r=0, a=3q +0 =3q
a3=[3q]3= 27q3 = 9[3q3] = 9m where m=[3q3]
when r=1, a=3q+1
a3 = [3q+1]3
= [3q]3 +[1]3 +3[3q][1]{3q+1}
= 27q3 +27q2 + 9q + 1
=9{3q3 + 3q2 + q} + 1 =9m+1 where 'm' =3q3 + 3q2 + q
when r=2, a= 3q + 2
a3=[3q+2]3
=27q3 + 54q2 + 36q + 8
=9{3q3+ 6q2+4q} +8 =9m +8 hwre 'm' = 3q3+6q2+4q
hence proved
Answered by
3
Step-by-step explanation:
Let a be any positive integer and b = 3
a = 3q + r, where q ≥ 0 and 0 ≤ r < 3
∴ r = 0,1,2 .
Therefore, every number can be represented as these three forms. There are three cases.
Case 1: When a = 3q,
Where m is an integer such that m =
Case 2: When a = 3q + 1,
a = (3q +1) ³
a = 27q ³+ 27q ² + 9q + 1
a = 9(3q ³ + 3q ² + q) + 1
a = 9m + 1 [ Where m = 3q³ + 3q² + q ) .
Case 3: When a = 3q + 2,
a = (3q +2) ³
a = 27q³ + 54q² + 36q + 8
a = 9(3q³ + 6q² + 4q) + 8
a = 9m + 8
Where m is an integer such that m = (3q³ + 6q² + 4q)
Therefore, the cube of any positive integer is of the form 9m, 9m + 1, or 9m + 8.
Hence, it is proved .
THANKS
#BeBrainly
Similar questions